REAL ALGEBRAIC VARIETY STRUCTURES ON P. L. MANIFOLDS

BY SELMAN AKBULUT AND HENRY C. KING¹

Communicated by P. T. Church, October 25, 1976

A closed smooth manifold M^m is said to bound a smooth *spine-manifold* if M bounds a compact smooth manifold W^{m+1} and if there are a finite number of transversally intersecting closed submanifolds $\{M_i\}$ of W such that $W/\bigcup M_i \approx \operatorname{cone}(M)$, where \approx is piecewise differentiable homeomorphism.

DEFINITION. An A_1 -structure on a P. L. manifold M^m is: $M = M_0 \cup \bigcup_i \operatorname{cone}(\Sigma_i) \times N_i$ where M_0 is a codimension zero smooth submanifold of M, $\partial M_0 = \coprod_i \Sigma_i \times N_i$, N_i 's are smooth manifolds and Σ_i 's are exotic spheres bounding smooth spine-manifolds.

 A_1 -structures satisfy regular neighborhood and product structure properties, and there is a classifying space B_{A_1} with inclusions $B_0 \longrightarrow B_{A_1} \longrightarrow B_{PL}$ (see [3]). This reduces the existence of A_1 -structure on a P. L. manifold to a bundle lifting problem.

Theorem 1. Any closed A_1 -manifold is P. L. homeomorphic to a real algebraic variety.

COROLLARY 1. All P. L. manifolds of dimension less than 10 are P. L. homeomorphic to real algebraic varieties (also see [1]).

THEOREM 2. If a closed smooth manifold bounds a smooth spine-manifold, then it can be represented as a link of an isolated real algebraic singularity. (Converse of this is the Hironaka's resolution theorem.)

COROLLARY 2. Elements of Γ_8 , $2\Gamma_{10}$, and all exotic spheres which admit fixed point free smooth involutions are links of real algebraic singularities (also see [2]).

A BRIEF SKETCH OF THE PROOFS. Let M be a closed A_1 -manifold. For simplicity assume $M^m = M_0^m \cup \text{cone}(\Sigma^{m-1})$; then there is W^m with closed submanifolds $\{M_i\}$ such that $W/\bigcup M_i \approx \text{cone}(M)$, and $\partial W = \Sigma$. Let $\widetilde{M} = M_0 \cup W$.

By proving a relative version of the Nash-Tognoli approximation theorem we can make the smooth manifold \widetilde{M} a real algebraic variety V, so that the smooth submanifolds $\{M_i\}$ of \widetilde{M} correspond to the subvarieties $\{V_i\}$ of V.

AMS (MOS) subject classifications (1970). Primary 26A78; Secondary 57C25. Key words and phrases. Algebraic varieties, exotic spheres.

¹Both authors supported by National Science Foundation grant MPS72-05055 A03.

Let $V = f^{-1}(0)$ and $\bigcup V_i = g^{-1}(0)$, where f(x) and g(x) are polynomials. Let $F(x, t) = f(x)^2 + (tg(x) - 1)^2$, then $\hat{F}(y) = |y|^{2d} F(y/|y|^2) = 0$, y = (x, t), d = degree F, gives the equations of

$$V/\bigcup V_i \approx \widetilde{M}/\bigcup M_i = M_0 \cup (W/\bigcup M_i) \approx M_0 \cup \operatorname{cone}(\Sigma) = M.$$

This sketches the idea of the proofs of Theorem 1 and 2. Corollary 1 and 2 are true because elements of Γ_8 , $2\Gamma_{10}$ bound spine manifolds (see [4]); and any exotic sphere Σ with fixed point free smooth involution τ bounds the obvious spine manifold $\Sigma \times I/(x,0) \sim (\tau(x),0)$.

REFERENCES

- 1. S. Akbulut, Real algebraic equations for a class of P. L. manifolds (to appear).
- 2. H. King, Approximating submanifolds of real projective space by varieties, Topology 15 (1976), 81-85.
- 3. N. Levitt, Exotic singular structures on spheres, Trans. Amer. Math. Soc. 205 (1975), 371-388. MR 51 # 14078.
- 4. R. Schultz, Circle actions on homotopy spheres bounding plumbing manifolds, Proc. Amer. Math. Soc. 36 (1972), 297-300. MR 46 # 8248.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742