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A closed smooth manifold Mm is said to bound a smooth spine-manifold 

if M bounds a compact smooth manifold Wm*x and if there are a finite number 
of transversally intersecting closed submanifolds {Mt} of W such that W/\<)Mi 

« cone(M), where « is piecewise differentiable homeomorphism. 

DEFINITION. An A j-structure on a P. L. manifold Mm is: M = M0 U 
U/Cone(S/) x Nt where M0 is a codimension zero smooth submanifold of M, 
bM0 = lIjEj x jVf, JVj's are smooth manifolds and S '̂s are exotic spheres bound­
ing smooth spine-manifolds. 

A j-structures satisfy regular neighborhood and product structure properties, 
and there is a classifying space BA with inclusions B0 —+ BA —> BPL (see 
[3]). This reduces the existence of A t -structure on a P. L. manifold to a bundle 
lifting problem. 

THEOREM 1. Any closed A ^-manifold is P. L. homeomorphic to a real 

algebraic variety. 

COROLLARY 1. All P. L. manifolds of dimension less than 10 are P. L. 

homeomorphic to real algebraic varieties (also see [1]). 

THEOREM 2. If a closed smooth manifold bounds a smooth spine-manifold, 

then it can be represented as a link of an isolated real algebraic singularity. 

(Converse of this is the Hironaka's resolution theorem.) 

COROLLARY 2. Elements ofTs, 2 r 1 0 , and all exotic spheres which admit 

fixed point free smooth involutions are links of real algebraic singularities (also 

see [2]). 

A BRIEF SKETCH OF THE PROOFS. Let M be a closed A x -manifold. For 
simplicity assume Mm = M™ U cone(Sm""1); then there is Wm with closed sub-
manifolds {Mt} such that W/\jMt « cone(M), and dW = S. Let M = M0 U W. 

By proving a relative version of the Nash-Tognoli approximation theorem 
we can make the smooth manifold M a real algebraic variety V, so that the 
smooth submanifolds {Mt} of M correspond to the sub varieties {V(} of V. 
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Let V = f~l(0) and U ^ . = g~~1(Q), where f (pc) and g(x) are polynomials. 

Let F(x, t) = f(x)2 + (tg(x) - l ) 2 , then F(y) = \y\2dF(y/\y\2) = 0, y = 

(A:, 0» d = degree F, gives the equations of 

V/\JV. « M/UM. = M0 U ( W / I M ) « M0 U cone(S) = M. 

This sketches the idea of the proofs of Theorem 1 and 2. Corollary 1 and 2 are 
true because elements of T8 , 2 r i 0 bound spine manifolds (see [4]); and any 
exotic sphere 2 with fixed point free smooth involution r bounds the obvious 
spine manifold 2 x ƒ/(*, 0) ~ (r(x), 0). 
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