SPACES OF SMOOTH FUNCTIONS ON ANALYTIC SETS

BY G. S. WELLS

Communicated by Samuel Eilenberg, October 25, 1976

1. Stability. Let $X \supset Y$ be real analytic (or, more generally, closed semi-analytic) subsets of R^n with dim X < n, and let $M \subset N$ be submodules of $(C^{\infty}(R^n))^m$ obtained (as modules of global sections) on tensoring by $C^{\infty}(R^n)$ coherent real analytic subsheaves $\widetilde{M} \subset \widetilde{N}$ of $(\mathcal{O}(R^n))^m$, where $\mathcal{O}(R^n)$ denotes the sheaf of real analytic functions on R^n . Let M(Y, X) (similarly for N) be the space of m-tuples ϕ of Taylor fields on X flat on Y such that at each point $x \in X$, ϕ_x is in the formal completion M_x of M at x. Let $r: N(Y, R^n) \longrightarrow N(Y, X)/M(Y, X) = P(Y, X)$ denote the restriction.

THEOREM 1. There is a continuous $E: P(Y, X) \rightarrow N(Y, R^n)$ such that rE = 1.

Theorem 1 is proved using the approach of [1, Chapter 6], where it is shown that $r: N(Y, \mathbb{R}^n) \longrightarrow N(Y, X)$ is onto, with modifications as in [5]; E is nonlinear.

The ideal I of analytic functions vanishing on a real analytic set need not be coherent, but using a suitable decomposition of X by (nonclosed) semianalytic subsets, on each of which I is globally generated, Theorem 1 can be applied to give, with E(Y, X) denoting the space of smooth functions on X flat on Y.

THEOREM 2. There is a continuous $E: E(Y, X) \rightarrow E(Y, R^n)$, a right inverse for the restriction.

J. Mather's proof ([2, in particular, p. 283 and following]), can then be applied to give

COROLLARY 1. Infinitesimal stability implies stability for smooth proper mappings of X into a manifold.

2. G-manifolds. Let G be a compact Lie group acting linearly on \mathbb{R}^n and let $\phi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a polynomial "Hilbert" map (i.e. ϕ induces a mapping from the polynomials on \mathbb{R}^m onto the G invariant polynomials on \mathbb{R}^n). Let $X \subseteq \mathbb{R}^n$ be a G invariant analytic set and let $C_G^\infty(X)$ denote the space of G invariant smooth functions on X. The method of Theorem 1 (see [5]) gives

THEOREM 3. There is a continuous $E: C_G^{\infty}(X) \longrightarrow C^{\infty}(\mathbb{R}^m)$ such that $\phi^*E = 1$.

AMS (MOS) subject classifications (1970). Primary 58C25.

When X is a manifold this result has also been obtained by J. Mather [8].

COROLLARY 2. G infinitesimal stability implies stability for proper smooth G invariant mappings of X into a G-manifold of finite orbit type.

When X is a manifold this result has also been obtained by V. Poenaru [3].

3. Immersions. Let $X \subseteq \mathbb{R}^n$ be a compact real analytic set and let $p \in X$. If the maximal ideal in the local ring of C^{∞} functions on X at p has a minimal generating set of t elements, then by the Malgrange preparation theorem there is a smooth embedding ϕ of B^t into R^n with $\phi(0) = p$ and $Z = \phi(B^t)$ containing a neighbourhood V of p in X; also $Im(D\phi(0)) = T_n(X)$ is independent of ϕ , where $D\phi$ denotes the derivative of ϕ . $T(X) = \bigcup_{p \in X} T_p(X)$, the tangent space of X, is a subspace of $T(R^n)|_X$, the tangent space of R^n restricted to X; $T_n(X)$ is the fibre of T(X) at p. $T(X)|_{V}$ is a subspace of $T(Z)|_{V}$. If K is a simplicial complex and M is a smooth manifold, let $L_K(T(X), T(M))$ denote the set of continuous maps F from K into the space of smooth fibrewise mappings from T(X) into T(M) which are linear embeddings on each fibre and such that for each $k \in K$ and $p \in X$ there are neighbourhoods $U \subset V$ of p and $W \subset K$ of k such that $F|_{W}$ restricted to $T(X)|_{U}$ may be extended to a continuous map from W into the smooth fibrewise linear bundle maps from $T(Z)|_{U}$ into T(M). Two such maps are homotopic if they can be joined by an element of $L_{K\times I}(T(X), T(M))$. An immersion of X in M is a smooth mapping $f: X \longrightarrow M$ such that for each $p \in X$ there is a neighbourhood Q of p such that $f^*: C^{\infty}(M) \to C^{\infty}(Q)$ is onto. If the space of immersions (with the Whitney topology as usual) of X in M is denoted by I_m and $[K, I_m]$ denotes the space of continuous maps from K into I_m , then

THEOREM 4. The homotopy classes of $L_K(T(X), T(M))$ and $[K, I_m]$ are put in 1-1 correspondence by the derivative when dim $M - \operatorname{Max}_{p \in X}(\dim T_p(X)) \ge 1$.

Theorem 4 may be proved by a reduction to the corresponding known result for manifolds.

4. Diffeomorphisms. Let $X \subseteq R^n$ be a closed semianalytic set with a semianalytic stratification such that for each $x \in X$ the dimension of the stratum through x and the dimension of the space of analytic tangent vectors of X at xcoincide. Let D(X) denote the space of smooth diffeomorphisms, let $I_s(X)$ denote the space of smooth isotopies of X and let r(F) = F(1), for each F belonging to $I_s(X)$.

THEOREM 5. There is a neighbourhood U of 1 in D(X) and a continuous map $E: U \rightarrow I_s(X)$ such that rE = 1.

Theorem 5 is proved using the techniques of [5].

278 G. S. WELLS

REFERENCES

- 1. B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Cambridge; Tata Inst. of Fundamental Research, Bombay, 1967. MR 35 #3446.
- 2. J. N. Mather, Stability of C^{∞} mappings. II: Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254-291. MR 41 #4852.
- 3. V. Poénaru, Stability of equivariant smooth maps, Bull. Amer. Math. Soc. 81 (1975), 1125-1126.
- 4. J.-C. Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, Berlin and New York, 1972.
- 5. G. S. Wells, Extension theorems for smooth functions on real analytic spaces and quotients by lie groups and smooth stability (preprint).
 - 6. ——, Extension theorems for smooth modules (preprint).
 7. ——, Immersions of analytic spaces (preprint).

 - 8. J. N. Mather, Differential invariants (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WITWATERSRAND, JOHAN-NESBURG, SOUTH AFRICA