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We recall the notation and results of [3]. 
Let Q be the rational numbers. 
We let L be a Q integral lattice in Q*, i.e. Q(%x , J 2 ) G Z for all £1? £2 G 

L. Let Z,#(0 be the Q dual of L, i.e. LJQ) = {r? G Rk | Q(r?, £) G Z, VS € ^)-
Then L#(Q)/L is a finite Abelian group, and we letTV^ be the exponent of 
L*(Q)/L> i-e. the smallest positive integer x so that x • £ G Z, for all £ G LjjQ). 
Choosing a Z-basis -STj of L, we let DQ^L) =: det{Q(Jf/, Jfy)}. Then the integer 
DQ(L) is independent of the choice of basis of L. 

Then we define 

rL(Q)~{geo(Q)\m = L} 

and 

1 ^ ( 0 = <( I | , e ) k f t , c , d G Z , * d - Z > c = 1, l(C 3-')H 
ft = 0 mod 2 and c = 0 mod 2NL\ 

Then T L ( 0 is an arithmetic subgroup of 0 ( 0 and rL(0/(cyclic group of order 4) 
is an arithmetic subgroup of PS12(R) (contained in the T# theta group). Then 
using the corollary to Theorem 5 of [3] we have 

THEOREM 1. Let y be a K x K finite function in Fî(s2 - 2s) with s > 
Vik. Then the sum with (G, g) G s5£ x 0 ( 0 , 

(l.i) 7*(Gf g)=z «Q&> *rlton\ 
is absolutely convergent Moreover, for (12, 7) G 1^(0 x 1^(0, we have the 
functional equation 

(1.2) T£(Ga, gy) « a£ (S2, 7) 7* (G, *), 

w/iere OLQ is a unitary character on T L (0 x T L (0 taking values in S4 (where 
5y = {z G C I z7 = 1} for j any positive integer). Moreover, T^ is a C°° function 
onST2x 0 ( 0 satisfying D * T^(G, g) = 3* (D){p(G, g) for any D in the 
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universal enveloping algebra of Sl2 x 0 ( 0 (* represents differentiation on the 
left). In particular, cosl * 7^ = (s2 - 2s) 7̂ . Finally we have the estimate 

(1.3) \T£(G> J)I <Mr'a1'2 Ug"1 | | f */*-* 

wAere M ft some positive constant independent of(G, g)9 rG denotes the A part 
of G in the Iwasawa decomposition of G — KGa(rG)n(xG), and || \\k denotes 
the Frobenius norm of a linear operator on Rk. 

REMARK 1. The function T% is an automorphic form on Sl2 x 0 ( 0 in 
the sense of the definitions in [1]. 

REMARK 2. The unitary character OQ on 1^(0 x TL(Q) is given as 
o^(ft, co) = c(ft), where the map ft ^ c(£2) on 1^(0 is given by 

where y =£ 0 with 

!

1 if Ô = 1 mod 4, 

V^T i fS=3mod4, 

and (—) the quadratic residue symbol as given in [4]. 
Using Remark 2 we then construct on P = { z € C | Im(z) > 0}, the upper 

half plane, a half-integral multiplier system for the discrete arithmetic group 

^NL = J Ie Sl^Z^y = 0 mod 2WL, /? = 0 mod 2 V 

of degree s, taking values in 54. That is: if VQ(G) = {c((G, 1))} ty2(G) with 

( l i f c G ^ 0 , 

(sgn(dG) ifcG = 0, 

then 

vQ(GtG2)(c3z 4- d3Y = VQiG&QOBtXciZ + dxy(c2z + d2)\ 

where Glt G2 G AN with 
Z» 

[•«i v i pa ft3l 

and <?tG2 = 
?/ dtJ L?3 daJ 

(where zs = I z p * ^ <•*««>» w i t h - ff < arg z < JT). 
Then using Theorem 1 and the corollary to Theorem 5 of [3], we deduce 

the following. 
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THEOREM 2. Let $ be a function belonging to EQ(S2 - 2s, s, sx, 0) 
(with s>V2k and st = s - Vi(a - b)) of the form on Œ+ : y(X) = 

Q(X, X)s-xe-"^x>xï\\X+\r(s+si+kl2-2)Q(X, É+)*i, 

where £+ G <? is a nonzero complex isotropic vector, i.e. Q(£+, £+) = 0, Then 
we let 

o.) 5>«>-a->*'ï(J^1].').«) 
w/Y/z z = -.y/jc + sf-lx2 G P. 7%ew we have the expansion 

(1.5) T$(z,g)= Z n ' - V ^ ^ Û r ) , 
n S Z ; n > l 

#<»= E f^r1M fHte«)+ir (*+*i+* /2 '2) 

{AfeZ,|<2(M,M)=n} 

Then T£(Z, #) is an antiholomorphic cusp form in z for A N L of degree |s| 
/orm for AN with multiplier VQ of degree s, that is 

with G = [a
c %] G A^ . Moreover, we have that Tfa, g)^is a cusp form in z 

for ANL, that is, T$ is holomorphic at <*> (from 1.5) and T£ (U + y/^Tv, g) = 
0(u~^_ 1 /4 )) as v —• 0 uniformly in u. 

REMARK 3. Choosing the quadratic form Q = xy + zw on R4 and a suit­
able Q integral lattice L Ç R4, we obtain from the construction above automor-
phic forms similar to £2(rl5 T2, Z) in [6]. We also note the construction of 
related automorphic forms in [2] and [5] for the case k = 3. 

REMARK 4. From the invariance of T^ in the 0 ( 0 variable relative to 
r L ( 0 , we see that fyigy) = ^ f e ) for all g G 0 ( 0 , 7 € r L ( 0 . Jhe interpre­
tation of formula (1.5) for T^ is simply the Fourier expansion of T^ at °° 
with each Fourier coefficient ip„(g)ns~~l an automrophic form for 0 ( 0 relative 
to rL(fi). 

REMARK 5. In a manner similar to the construction above (with the added 
assumption that b = 2), we start with the function </> G ü'gO2 + ^s> 5> 0, s2) £ 
FQ(S2 + 2s) given by 

v(Y) = iô(r, y)!1*'-Vö<y*r>ö(x, s j - * 2 o n ^_ 

where s < - Mk and s2 = \s\ + Via - 1 and £_ G Cô, nonzero complex isotropic, 
i.e. 2(£_, £_) = 0. Then as in Theorem 2 we let 
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(1.6) r j ( z , * ) = S \n\W-le">^ln'?n
2(g)9 

where 

{M<=L\Q(M,M)=n} 

z £ P = lower half plane. 
Then T^(z, #) is an antiholomorphic cusp form in z for A^ of degree \s \ 

with multiplier v0. 

Then we can analyze the cuspidal behavior of each <p„2 determined in 
Remark 5. 

THEOREM 3. Let b = 2 #raf /er <^2 Z>e as in Remark 5. 77?e« for the 

unipotent radical H of any rational maximal parabolic subgroup of 0(Q) we 

have 

(with dh an H invariant measure on H/H n rL(Q)) for all g G 0(Q) and all 

n<-\. 

REMARK 6. Theorem 3 implies that the family of automorphic forms 
lps^ belongs to the space of cusp forms (in the sense of [1]) of 
L\0(Q)lrL(Q)). 

The case b = 2 turns out to be critical in the proof of Theorem 3. The 
basic idea behind the proof of Theorem 3 is what we call the Cusp Vanishing 
Theorem. 

THEOREM 4. Let y G FQ(S2 + 2s) be a K x K finite function with b = 
2 and s <-Mk. Then for any I G f i „ and for the unipotent radical H of 

any rational maximal parabolic subgroup of 0(Q), fHjHxy(gh(X)) dtxx(h) = 0 
for all g G 0(Q) (with dfix some H invariant measure on HjHx, Hx = isotropy 

group of X). 

Again we note the importance of the case b = 2. If b = 2, then 0(Q)/K is a 
Hermitian symmetric space. We let F = f + p be the Cartan decomposition 
of the Lie algebra of 0(Q). Then we have the direct sum F c = f c 0 p + 0 
p~ 9 where p~ and p + span the holomorphic and antiholomorphic tangent 
vectors at the "origin" in 0(Q)/K. Then we recall the construction of a family 
of holomorphic discrete series representations of 0 ( 0 . We consider K = 
0(a) x 0(2), and let xn

: & —> Sl ^e t r i e unitary character on K which is 
trivial on 0(a) and maps 

!

T cos 0 sin 0 "I ) 

| - 7 r < 0 < 7 r } 
b-sin 0 cos 0J ) 
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to e^-lnd (n e Z). Then we form the "holomorphic" unitarily induced 

representation space H(0(Q)/k, \n) = &'- 0(Q) —* C I y(gk) = y(g)xn(k) f° r 

all g G 0 ( 0 , Jfc G tf, ^ * W = 0 for all W G p+, and J ö ( f i ) / i C Wig)\2 do(g) < <*>} 

with * W, convolution on the left and do some 0 ( 0 invariant measure on 

(KQ)IK. Then we have 

THEOREM 5. The representation on 0 ( 0 in A~ (see Remark 1 in [3]) 

is equivalent to the "holomorphic" induced representation of 0 ( 0 in 

H(0(Q)/K, \32)
 where s2 = I s I + 1/2a - 1 • 

REMARK 7. The representation of 0 ( 0 in A^ (for £ = 2) is thus always 
"square integrable". Moreover A~ is "integrable" if s < 2 - k. 

COROLLARY TO THEOREM 5. Let s < 2 - k. Then each $s
n
2 given in 

Remark 5 is a "Poincaré series" on 0(Q)/FL(Q). That is, there exists a K 

finite function qn eH(0(Q)/K, x ^ ) so that fn(g) = V^T iQ)qn(yg-1). 
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