INADMISSIBLE RECURSION THEORY

BY S. D. FRIEDMAN AND G. E. SACKS¹

Communicated by Solomon Feferman, September 23, 1976

Let β be a limit ordinal, and let S_{β} be stage β of Jensen's S hierarchy for L (cf. [1, p. 82]). S_{β} is the setting for β -recursion theory, an extension of recursion theory on Σ_1 admissible, initial segments of L (so-called lpha-recursion theory) to rudimentarily closed, initial segments of L. A set $A \subset S_{\beta}$ is said to be β -recursively enumerable (β -r.e.) if it is Σ_1 definable over S_{β} . If β is Σ_1 admissible, i.e. S_{β} satisfies Σ_1 replacement, then many theorems about ordinary r.e. sets $(\beta = \omega)$ remain true when r.e. is replaced by β -r.e. (cf. [3], [5] and [6]). The results below, particularly the solution to Post's problem devised by Friedman in Theorem 3, suggest that the assumption of Σ_1 admissibility is superfluous. This outcome is in the natural order of events, because arguments in the Σ_1 admissible case often consist of showing that the use of Σ_2 or Σ_3 admissibility when $\beta = \omega$ was unnecessary. It is a desirable outcome in that it implies that the methods of ordinary recursion theory can be applied to all levels of the J hierarchy for L (cf. [1]).

The definitions in this paragraph are drawn from α -recursion theory. A is β -recursive (β -rec.) if A and $S_{\beta} - A$ are β -r.e. A function f is β -rec. if its graph is. x is β -finite if $x \in S_{\beta}$. Let F(e, x) be a Σ_1 formula such that $\{F(e, x) \mid e \in S_{\beta}\}$ is a list of all Σ_1 formulas with free variable x and parameters in S_{β} . For any $A \subset S_{\beta}$, $\{e\}^{A}(x)$ has y as a value if S_{β} satisfies

$$(Eu)(Ev)\left[u\subset A\ \&\ v\subset S_{\beta}-A\ \&\ \digamma(e,\langle x,\,y,\,u,\,v\rangle)\right].$$

f is weakly β -recursive in A $(f \leq_{w\beta} A)$ if for some e and all x, $\{e\}^A(x) = f(x)$. $B \leq_{w\beta} A$ if its characteristic function $C_B \leq_{w\beta} A$. Let B^* be the set of all β finite $x \subset B$. B is β -recursive in A $(B \leq_{\beta} A)$ if $B^* \leq_{w\beta} A$ and $(S_{\beta} - B)^* \leq_{w\beta} A$.

Suppose A is nonempty and β -r.e. In the admissible case an enumeration of A is a β -rec. map f of β onto A. This definition is unsuitable in the inadmissible case, because there may be a $\delta < \beta$ such that $f[\delta]$, the range of f restricted to δ , is unbounded in S_{β} . A notion of enumeration which suits both cases is as follows. Let G(x, y) be a Δ_0 formula such that $x \in A$ iff $S_{\beta} \models (Ey)G(x, y)$. Let A^{δ} be the set of all $x \in S_{\delta}$ such that $S_{\delta} \models (Ey)G(x, y)$. Then $\{A^{\delta} \mid \delta < \beta\}$ is an enumeration of A, namely a nondecreasing, β -recursive sequence (of length β) of β -finite sets whose union is A.

AMS (MOS) subject classifications (1970). Primary 02F27.

The second author was supported in part by NSF Grant MCS 76-10430.

A is said to be tamely β -r.e. (t.r.e.) if there is an enumeration $\{A^{\delta}\}$ of A such that $(x)(E\delta)$ $[x \in S_{\beta} \& x \subset A \longrightarrow x \subset A^{\delta}]$. T.r.e. sets are amenable to some of the arguments of admissible recursion theory. Unfortunately there are many β 's such that every t.r.e. set is β -recursive in 0, the empty set.

THEOREM 1. Assume β is not Σ_1 admissible. Let C be the complete β -r.e. set. Then there exists a β -rec. A such that $0 <_{\beta} A <_{\beta} C$, $C \leqslant_{w\beta} A$, and every set which is either β -rec. or t.r.e. is β -rec. in A.

The Σ_1 cofinality of β ($\sigma 1 \operatorname{cf}(\beta)$) is the least γ such that $\beta = \bigcup f[\gamma]$ for some β -rec. f. The Σ_1 projectum of β ($\sigma 1 p(\beta)$) is the least γ such that some one one β -rec. f maps β into γ . A is regular if $A \cap x \in S_{\beta}$ for all $x \in S_{\beta}$. γ is β -recursively regular if there is no β -rec. f such that $\gamma = \bigcup f[\delta]$ for some $\delta < \gamma$.

THEOREM 2. Assume $\sigma 1cf(\beta) \ge \sigma 1p(\beta)$. Then there exist two regular, tamely β -r.e. sets such that neither is weakly β -recursive in the other.

Theorem 3 (S. Friedman [2]). Assume $\sigma 1p(\beta)$ is β -recursively regular. Then there exist two β -r.e. subsets of $\sigma 1p(\beta)$ such that neither is weakly β -recursive in the other.

The proof of Theorem 2 is closely tied to ideas associated with admissible recursion theory. Its converse has been proved by W. Maass [4]. The proof of Theorem 3 has several features with no antecedents in the admissible case, the most notable being the use of a β -recursive version of Jensen's \diamond principle [1, p. 48] to overcome the fact that the β -r.e. sets constructed cannot be required to be tame.

REFERENCES

- 1. K. J. Devlin, Aspects of constructibility, Lecture Notes in Math., vol. 354, Springer-Verlag, Berlin and New York, 1973. MR 51 #12527.
- 2. S. D. Friedman, Recursion on inadmissible ordinals, Ph. D. Thesis, Massachusetts Institute of Technology, 1976.
- 3. M. Lerman, On suborderings of the α -recursively enumerable α -degrees, Ann. Math. Logic 4 (1972), 415-443. MR 48 #5835.
- 4. W. Maass, Inadmissibility, tamely RE sets and the admissible collapse, Ann. Math. Logic (to appear).
- 5. G. E. Sacks and S. G. Simpson, The α -finite injury method, Ann. Math. Logic 4 (1972), 343-368. MR 51 #5277.
- 6. R. Shore, The recursively enumerable α -degrees are dense, Ann. Math. Logic 9 (1976), 123-155.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO ILLINOIS 60637

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139