
BOOK REVIEWS 243 

chapter and section coordinates at the top of each page. The style of the book 
is clear and all details are given. All in all, the monograph is an important 
addition to the literature on topological semigroups and their harmonic 
analysis; in due time we will be in a better position to judge which parts of 
this material will most affect and stimulate further research. 
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From the beginnings of the differential calculus, through the calculus of 
variations to modern control theory, dynamical and optimization problems 
have always provided a stimulus for mathematical activity. A two person 
differential game is a generalization of a control system, and can be consid­
ered as a control system with two competing controllers or players. (The 
theory of differential games with more than two controllers is in an even 
more elementary state, basic problems being the possibilities of coalitions, 
how to model information flow, and all the other problems of von Neumann's 
discrete game theory, now in a dynamic setting.) Conversely, control theory 
can be considered as a special case of a differential game with just one player. 

Pioneering work on differential games was undertaken by Rufus Isaacs in 
the 1950's, though his.work was not generally available until his book 
Differential games (J. Wiley and Sons, New York, London), was published in 
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1965. In fact, ideas such as Isaacs' 'main equation' are generalizations of 
Bellman's equation of dynamic programming. 

Control theory has two main branches. The first studies the problem of 
controllability, that is, whether a given objective can be attained. The second, 
optimal control theory, studies how a given objective can be attained in an 
optimal way, (usually meaning with minimal cost). The theory of two person 
differential games divides similarly into two areas, though the problems are 
now more involved. The first area discusses whether one controller (or player) 
can force the dynamical system to attain some objective whatever the other 
player does. Such a situation was called a 'differential game of kind' by 
Isaacs. The second, usually a two person zero sum game, discusses a real 
valued cost or payoff which is a function of how the game evolves, and which 
one player is trying to mimimize the other to maximize. Such games were 
called 'differential games of degree' by Isaacs. 

Following Isaacs, the authors of other early papers in the subject often 
studied differential games through the so-called Isaacs-Bellman equation (see 
below). Unfortunately, this equation is nonlinear and in general it is not 
known whether it has a solution. Further development of the theory of 
differential games was closely related to progress in mathematically modelling 
the ideas of strategy and control. Certain approaches to these problems will 
now be briefly described. 

For both control and differential game problems it is usually supposed that 
the dynamics are described by a system of ordinary differential equations of 
the form 

(1) x = ƒ(/ , x,p, q)9 x(0) = x0 G R\ tG [0, oo), x G Rn,p G P, q G Q, 

where P and Q are, say, compact subsets of Rl. In the control situation there 
is just one control set and one control variable. The usual conditions required 
of a function appearing on the right-hand side of such a system, in order to 
ensure the existence and uniqueness of a solution trajectory, are that it is 
measurable in time t and satisfies some Lipschitz continuity condition in the 
state variable x. (See, for example, The theory of ordinary differential equa­
tions, McGraw-Hill, New York, 1955, by E. Coddington and N. Levinson.) 
This somewhat basic difference in the roles of time and space variables is not 
made clear by Hajek; on p. 36 he remarks that a time dependent (or, 
following Hajek, allonomous), system can be considered as time independent 
by labelling time a new state variable £ such that £ = 1. The above standard 
existence conditions for the dynamics, however, have important implications 
for the kind of control functions that may be considered. A control function 
that is just a measurable map of time with values in the control set is called 
an open loop control. If, for example, the ƒ occurring in the dynamics (1) is 
continuous in/? and q and if p(t) and q(t) are open loop controls then, after 
substituting in ƒ, we obtain 

x = f(t,x,p(t)9q(t)). 
That is, the right-hand side becomes a measurable function of time /, and so 
the system can be integrated. 

However, a control function that is a function not only of time but also of 
the state is called a closed loop, or feedback, control. If p(t9 x) and q(t, x) are 
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feedback controls then, after substitution, we have 
x = f(t,x,p(t,x),q(t9x)). 

It is clear that restrictive continuity conditions must be imposed upon ƒ and 
the control functions to ensure that the right-hand side is Lipschitz continu­
ous in the state x. Control theorists have circumvented these problems by 
considering feedback controls which, in time, are only piecewise Lipschitz 
continuous, or even piecewise constant. Consequently the theory of feedback 
controls is not satisfactory; this is particularly significant for two person zero 
sum differential games, where at any time each player is probably choosing 
his control value on the basis of what has happened to the system so far. 

Fleming (J. Math. Anal. Appl., 1961), was among the first to consider the 
problem of strategies and controls in differential games rigorously. He consid­
ered piecewise constant controls and related strategies in the case when the 
control variables appear separated, e.g.: 

ƒ (/, x, p, q) = ƒ, (t, x, p) + f2(t, x9 q). 
As the length of the intervals on which the controls are constant shrinks to 
zero, certain convergence problems arise, and in a sequel to the above paper 
discussing dynamics with a general ƒ and published in the Ann. of Math. 
Studies volume 52 in 1964, Fleming had the excellent idea of introducing a 
random perturbation of the trajectory at each step to facilitate the proof of 
this convergence. 

In a sequence of papers which culminated in his book Differential games 
(Wiley-Interscience, New York, London, 1971), Friedman considered control 
functions which were general measurable functions of time but approximated 
the idea of strategy by introducing partitions of the time interval. Correspond­
ing to any such partition a lower strategy for a player is a function that selects 
a piece of control function to be used on the next time interval by that player, 
on the basis of the control functions chosen by both players so far; an upper 
strategy, in addition, depends on the choice of control functions selected by 
the opposing player for the next time interval. Again convergence problems 
arise as the length of the partition time intervals shrinks to zero; however, 
because Friedman is using measurable control functions these are more easily 
handled. 

Another novel and interesting method of approximating strategies is in­
troduced by Danskin in Bull. Amer. Math. Soc. 80 (1974), 449-455. Danskin 
considers partions of the time interval and piecewise constant controls; 
however, the controls are chosen by the players in an overlapping manner. 
For example, suppose both players have chosen initial control values to start 
the game; after a certain delay one player will change his control value, then 
after another delay the second player will choose a new control value, on the 
basis of what has happened so far. Play continues in this manner, the delay of 
each player being the same at each move. To establish convergence as the size 
of the partition intervals decreases to zero Danskin also introduces random 
perturbations of the trajectory. A. Friedman, N. Kalton and the reviewer also 
considered this method of play in J. Differential Equations in 1974. 

A notion of strategy that does not involve partitions of the time interval 
was introduced by Roxin (J. Optimization Theory and Applications (1969)) 
and Varaiya and Lin (SIAM J. Control 1969). Write % (resp. T ) for the 
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measurable functions on the time interval with values in P (resp. Q) (that is, 
the open loop control functions). Then, for example, an s-delay strategy 
(s > 0) for the first player is a map a: °V -» % such that if for any t9 

4i(T) = #2 0 ) a - e -T < U 
where qx and q2 are in T , then 

(aqx)(r) = (a$2)(T) a-e- T < ' + s-
Write T, (resp. A5) for the s-delay strategies for the first (resp. second) player. 
Clearly if sx < s2 then, for example, T c T . 

Given a control function q(t) & °V and a strategy a G Ts a control func­
tion (aq)(t) E % is determined, and so, by solving the dynamical equations, 
a trajectory is obtained. 

Consider for the moment a two person zero sum differential game and 
suppose that the payoff has the form 

g(x(T)) + ( h(t9x9p9q)dt. 

Here T is the time the game terminates; T may be determined in advance so 
that the differential game has fixed duration, or it may be the 'time of 
capture', g and h are real valued and satisfy suitable continuity and measura-
bility conditions. In this situation, corresponding to q E T and a E Ts a 
trajectory x(t)9 and so a payoff 

I I (aq, q) = g(x(T)) + f \ t 9 x(t)9 aq(t)9 q(t)) dt 

is determined. Player Jx controlling p is trying to maximize this quantity 
whilst player J2 controlling q is trying to minimize. Consequently, if J{ uses 
strategy a the worse outcome for him would be the quantity 

u(a) = inf H(aq9q)9 

and the best outcome for Jx if he uses s-delay strategies is 
U(s) = sup u(a). 

«er, 
Similarly f or p E % and ft E AJ? we define the quantities 

v(P)=sup II(/>,&>), V(s)= inf *>(/?). 

Clearly (/(.y) (resp. F(s)) is monotonie increasing (resp. decreasing). If U 
and V denote their respective limits as s tends to 0 then N. Kalton and the 
reviewer established in Memoir 126 of the American Mathematical Society 
that U (resp. V) is equal to the upper (resp. lower) value obtained in the 
approximating procedures of both Fleming and Friedman, and then U = V 
if, for all / a n d j c G Rn

9 y E Rn 

min max H(t9 x9y9p9 q) = max min H(t9 x9y9p9 a). 
q(EQ pGP p(EPq<=Q 

Here H(t9 x9y9p9 q) is the Hamiltoniany -f(t9 x9p9 q) + h(t9 x9p9 q)9 and the 
above condition is called the Isaacs condition. If the Isaacs condition is not 
satisfied it is shown in the Memoir that the upper and lower values are equal 
if the players are allowed to use relaxed controls. This idea is similar to von 
Neumann's introduction of mixed strategies into a two person zero sum 
matrix game. A relaxed control selects at each time t a probability measure 



BOOK REVIEWS 247 

on the space P (resp. Q) of control values and the functions/ and h are 
evaluated at this measure by integration-not in the probabilistic sense of 
selecting a particular control value according to this measure. In an interest­
ing paper to appear in the J. of Differential Equations, E. N. Barron has 
shown that if the players control functions start at known values, and the 
players must then use controls which are Lipschitz continuous in time, for 
fixed Lipschitz constants, then the upper and lower values are equal, even if 
the Isaacs condition is not satisfied. 

Suppose the trajectory now starts at x0 at time t0. If the functions/, g and h 
satisfy suitable Lipschitz continuity conditions it can be shown that the value 
function U(t0, x0) is Lipschitz continuous in the initial conditions. From a 
classical result of Denjoy it is, therefore, differentiable almost everywhere and 
at points of differentiability it can be shown to satisfy the 'Isaacs-Bellman' 
equation: 

c) II 
— h min max H (/, x9 V U,p, q) = 0 

àt q t 
with boundary condition 

U(T,x) = g(x). 
It was Fleming in a paper in the J. Math. Mech. in 1964 who had the nice 
idea of obtaining solutions for certain nonlinear equations of the form 

^ + G ( / , x , V w ) = 0 
at 

by constructing differential games whose Hamiltonians were equal to G. 
N. Kal ton and the reviewer further extended this idea in papers in the J. 
Math. Anal, and Appl. in 1974, and in the Proceedings of the First Kingston 
Conference on Differential Games and Control Theory, published by Marcel 
Dekker, New York, 1974. Because of the use of approximating differential 
games with noise this technique is close to some singular perturbation 
methods. Analogies with solving certain boundary value problems by taking 
the expected value of functions of diffusions are also apparent. 

Finally, it is probably worth indicating why the theory of the control of 
stochastic differential systems and stochastic differential games is in some 
ways easier; this is because a new concept of solution developed from a result 
of Girsanov allows the almost unrestricted use of feedback controls. To 
describe Girsanov's theorem consider a stochastic differential equation in one 
dimension on the unit time interval: 

dx = ƒ(/ , x) dt + dw, x E R,t G [0, 1 ], x(0) = 0. 

Here wt is a Brownian motion. To obtain a stochastic process which can be 
considered a solution of the above system proceed as follows: Suppose Bt is a 
Brownian motion on a probability space (£2, it). Then the stochastic process 

wt = Bt- ff(s,Bs)ds 

is in general no longer a Brownian motion on (£2, /x). However, replace \i by /!, 
where dpi/dp = exp f(/J, and £(ƒ) = ƒ£ƒ(*, Bs)dBs - \fl

0f\s, Bs)ds. (Note 
the first integral is a stochastic integral.) Girsanov's theorem states that, if ƒ 
satisfies quite weak measurability and growth conditions in t and x9 then wt is 
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a Brownian motion on (fi, ju), i.e. on (£2, jl), dB = f(t, B) + dw, so the 
original Brownian motion Bt is a solution to the stochastic differential 
equation under the new measure JL. Girsanov's result extends to more general 
stochastic systems. Because only measurability conditions are required it is 
particularly useful in control and stochastic differential games. It was first 
used in control by Benes (SIAM J. Control 1971), and Davis and Varaiya 
(SIAM J. Control 1973), and in differential games by the reviewer (SIAM J. 
Control 1976). The same measure transformation method enables solutions to 
be found when at time /, ƒ depends on the part of the trajectory up to time t, 
or, in particular, ƒ depends on the trajectory at some time just before t (so the 
equation is a stochastic 'delay' equation). The application of Girsanov's result 
to the solution of stochastic differential equations should be more widely 
known. Girsanov's original paper appears in English translation in the Theor. 
Probability Appl. in 1960. 

Having sketched the development of differential games, consider now the 
book by Professor Hajek under review. As the title indicates, the book is 
concerned with games of kind, and in particular with pursuit games. The 
discussion, therefore, is about whether capture can be effected at all, rather 
than whether there is some minimum time for capture (though this latter 
problem is briefly touched upon in Chapter IV). 

In spite of the hardback cover, characteristic of this series, the text is 
photocopied from typescript. The first chapter presents well-known examples 
of pursuit games, such as the Homicidal chauffeur and the Lion and Man 
game (which has many unusual features). The second chapter discusses 
necessary conditions for the existence of solutions of the dynamical equa­
tions. The control sets P and Q are compact subsets of Rl as above and, 
appropriately, denote the space of control values for the pursuer and quarry 
respectively. The definition of strategy used by the author is that of Roxin 
and Varaiya and Lin described above. 

Chapters III to VI discuss aspects of the possibility of capture in linear 
pursuit games. Included in Chapter III is the interesting idea of considering 
the nonlinear problem of bringing a pendulum to rest in minimum time as a 
linear problem in game theory, by treating the nonlinear terms as the controls 
of a fictional opponent. Although the notion of Pontrjagin difference is used 
from §3.1 onwards it is not defined until §3.8. Nonlinear pursuit games are 
discussed briefly in Chapter VII and the compactness of, and other results 
for, strategies presented in Chapter VIII. There is no bibliography; any 
references are included in the text. Fortunately there are few typographical 
errors; only the statement at the top of p. 30 is initially confusing. There are 
large sections of exercises throughout the text and the mathematical back­
ground required for understanding the book is quite modest; probably only a 
course in ordinary differential equations is a necessary prerequisite. The 
writing has an idiosyncratic style, but as a set of lecture notes the book is, on 
the whole, quite readable and even enjoyable. 

The theory of differential games is still at an early stage of development. 
Though it asks interesting and important questions, only time will tell 
whether they are presently being approached in the best way, whether this 
approach will make significant contributions to mathematics, and whether the 
models are realistic and the solutions obtained helpful in solving real prob-
Igryic 

ROBERT J. ELLIOTT 


