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to introduce the states also, and develop the theory along lines in which both 
the logic and the space of its states play equally fundamental roles. The 
phenomenon of complementarity and the problems connected with the 
existence of a lattice structure on a logic then appear to emerge more clearly 
out of the manner in which the observables and states are interconnected. The 
expositions of Mackey and Zierler are of this type. To dismiss one of the 
crucial aspects of the subject in such a perfunctory manner as Piron has done 
is, at the least, very misleading. I would also like to point out that Piron makes 
no reference to the work of Zierler on the characterization of standard logics, 
although Zierler's work was done more or less simultaneously with Piron's and 
independently of it. There are many such instances of a lack of proper care in 
giving references to the work of others scattered throughout this book, making 
this exposition somewhat distorted. The reader who wants to be informed in 
depth on the various aspects of the subject and the extensive literature on 
these questions would do well to consult the volume entitled The logico-
algebraic approach to quantum mechanics, edited by C. A. Hooker (D. Reidel 
Publishing Company). 
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Non-archimedean fields and asymptotic expansions, by A. H. Lightstone and A. 
Robinson, North-Holland Mathematical Library, vol. 13, North-Holland/ 
American Elsevier, Amsterdam and New York, 1975, 204 + x pp., $24.95. 
The aim of this short book is to show that nonarchimedean fields and 

nonstandard analysis form an excellent setting for the study of asymptotic 
expansions. The authors have been quite successful in achieving this goal. One 
wishes there were more, but the terminal illness of Abraham Robinson, who 
wrote the first draft, prevented further collaboration on Harald Lightstone's 
final manuscript. Since both authors are now deceased, it will be up to others 
to further their ideas. 

An asymptotic expansion for a function ƒ with respect to an "asymptotic 
sequence" of functions <f>. is a formal series 2/^o a /^ / s u c^ ^ a t whüe the 
sequence of partial sums Sn(x) = 2"=o ai<l)i(x) maY diverge at a given x, there 
may yet exist an nx (in practice, small) such that Sn (x) is a satisfactory 
approximation to ƒ (JC). For the most part, the book deals with real, rather than 
complex, valued functions. A sequence of real-valued functions <f>0, <f>x, . . . is 
called an asymptotic sequence if there is a neighborhood of +oo in the real 
line R on which each ty is defined and nonvanishing and for each n in the 
natural numbers TV = {0, 1, 2, . . . } we have 0W + 1 = o((j)n), i.e., 
lim^oo <pn 4. j (x)/<pn(x) = 0. Given an asymptotic sequence {0,.}, a sequence of real 
numbers {a,-}, and a real-valued function ƒ defined on some neighborhood 
(7, +oo) of +oo in R, the formal sum 2 #/0/ is called an asymptotic expansion 
for/, and we write/— 2 at<f>i9 if for each n G TV, ƒ - 2o ai$i = ö(0«)- 0 n e 

may think of the n\\i error as being a higher order of infinitesimal than the last 
term adjoined to the series. 
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For the most part, the book deals with asymptotic expansions of the form 
2,°Lo aix~Vi where {̂ } is an unbounded, strictly increasing sequence in R. For 
vi = i we have an asymptotic power series; these behave very much like 
ordinary power series and have similar applications such as to solutions of 
differential equations. 

The formal development of asymptotic expansions begins in the book's 
sixth chapter, while Chapter 5 contains examples derived from integration by 
parts and the Euler-Maclaurin expansion, discussed in detail, of integrals of 
the form J„m g(t)dt9 m, n G N. Typical examples are the incomplete factorial 
function ei, where for t > 0, 

"M-f£*~'i7-? + • • • - ( - .»•£,+ - ] . 
and the exponential integral 

Of course, 2 {-\)nn\/tn+x diverges, but f or k + 1 equal to the integral part of 

Sk(i) = e~' 2 (-Dnn\/tn+l 

is a good approximation to ei(t); moreover, the larger the value of /, the better 
the approximation. For example, the value of ei(5) to five decimal places is 
.00115, while S4(5) = .001173, 55(5) = .001121, and 56(5) = .001183. On 
the other hand, |«(10) - S9(10)| < 1.7 X 10~9. 

To consider in what sense a possibly diverging sequence 2/Lo ^i*""' 
converges to a function ƒ, the authors turn to the Popken space P [5] in 
Chapter 7. The space P consists of equivalence classes of asymptotically finite 
functions, i.e., real-valued functions ƒ which are each defined in some 
neighborhood of +oo and are dominated there in absolute value by Bxt for 
some B and / in R. As usual, we write ƒ = 0(V )• Two such functions represent 
the same element of P, and we write ƒ s g, if \f - g\ = 0(x~") for each 
n G N; e.g., e~x s 0. 

Popken defined a nonhomogeneous norm </> for P by setting <£(ƒ) = ex 

where X = inf{> G R: ƒ = 0{xt)}. Given asymptotically finite f unctions ƒ and 
g and c # 0 in R, </>(ƒ) = 0 iff ƒ ̂  0, <*>(-ƒ ) = <t>(fl 

*(ƒ + g) < max[<Kƒ ),<?>(£)] < <K/) + <t>(g\ 

</>(ƒ * s) < </>(ƒ) • <K#)> a n d <KC/ ) = <j>(f). As usual, one defines a metric rf on 
P by setting rf([ƒ ], [g]) = <£(ƒ - g). As a metric space, P is complete. A series 
^neNfn converges in P if and only if l i m , ^ ^ = 0. Here one thinks of x~* 
as a higher order infinitesimal than x~~s when 0 < s < t; if l i m , ^ ^ = 0, 
then later terms in the series 2j& are higher order infinitesimals than the 
previous terms and can add essentially nothing to their sum. Given an 
asymptotically finite function ƒ and a strictly increasing unbounded sequence 
{v;} in R, ƒ ~ 2/GJV fl/*"""' if and only if ƒ = lim2?=o fl/*""1'' in ^-

Infinitesimals are usually considered as elements of some nonarchimedean 
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field, that is, an ordered field F containing an element a such that for every 
n E N, the multiplicative identity added to itself n times is smaller than a. 
Such an element or its negative is called an infinite element of F\ 0 and the 
multiplicative inverses of infinite elements together form the infinitesimal 
elements of F. 

The space L of formal sums ^nGN anx~~Vn, where vn < vn+x for each n and 
limw*>w = +00, is a nonarchimedean field with the obvious definition of 
multiplication and addition. If some an ¥=• 0, we may assume a0 # 0. The 
positive elements of L are those for which a0 > 0. For example, x — n is 
positive for each n E N and x~x is infinitesimal. If one writes 2 a

n
xV" ins tead 

of 2 a
n

x~V"> o n e obtains the space L studied by Levi-Civita [2] in the late 
nineteenth century, A. Ostrowski [4] in the 1930s, and D. Laugwitz in 1968 [1], 

The authors discuss L at the end of Chapter 1 as an application of the 
theory of nonarchimedean valuations and the corresponding metrics devel­
oped there. A nonarchimedean valuation on a field F is a map v\ F 
-> R U {+00} such that v(0) = +00, v(x) E R for all x # 0, and for all 
x,y E F, v{x -y) = v(x) + v(y) and v(x + y) > min[v(x)9v(y)]. The corre­
sponding metric d on F is derived from the function \x\v = e~v^x' by setting 
d(x,y) = \x — y\v. It follows that |0|„ = 0, |1|„ = 1, and for every x and y in 
F> \Av = l - * L \*y\v = U I J A ' l-̂  + A < max[Wv, \y\v\ < \*\v + \y\v> 
and \y\v < |^|^ => \x + y\v = 1^^. In L\ for example, one sets t>(0) = 0 and 
vŒneN anx~Vn) = 0̂ ̂  ao 7e 0. As a metric space, L' is complete. 

There are a number of interesting properties of these special metric spaces. 
For example, if lim an — a and Û ^ 0 , then for all sufficiently large m E N, 
KJu = lflly If ^e space is complete, S ^ E N an converges if and only if 
l i m ^ ^ an = 0. These and similar results are carefully established throughout 
the book with, unfortunately, no greater emphasis than that given to very 
familiar results. For example, a proof (Theorem 1.5.1) using special character­
istics of \-\v is given for the fact that if limS^ = S then lim|Sw|v = |5|„; but of 
course, | \Sn\v — \S\v\<i\Sn - S\v. In Chapter 4, the authors discuss a nonar­
chimedean field PR, and what they call S-continuity (Definition 4.4.1) is the 
ordinary notion of continuity of a function from a metric space into itself. 
More than a page is devoted to showing that ƒ: PR -> PR is S-continuous at 
a E Dom/ if and only if for any sequence an -> a,f(an) -> f {a) (Theorem 
4.4.6.). Of course these eccentricities, as well as the few factual errors (e.g. 
Lemmas 1.5.12, 3.5.6, 4.5.5), will be at most an annoyance to the careful 
reader. 

The Popken space P is not a field, but there is a sense in which 
asymptotically finite functions take their values in a nonarchimedean field, To 
explore this idea we turn to Abraham Robinson's nonstandard analysis [6]. 

Let 91 be the set theoretic structure built up from R; each object in 61 is 
obtained from R in a finite number of steps using the usual operations of set 
theory. For example, the set of all Borel measures on R is in <3L The book 
refers to 91 as a many sorted structure. 

Let Ê be a formal language for 91; Ê contains a name for each object in % 

file:///y/v/
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variables, connectives (i.e., -i, V, A, =>, <=>), quantifiers, and an assortment 
of brackets. The language £ also contains sentences built up from these 
"atomic" symbols. One shows that there exists a structure *<3l built up from a 
set of individuals *R with the following properties: 

(1) Every name of an object in <3l names something of the same type (i.e. 
built up with exactly the same operations from *R) in *6A. 

(2) (Transfer Principle) Every sentence in £ that is true for <3l is true when 
interpreted in *<3l; quantifiers, however, must be correctly interpreted. 

(3) There is a y E *N such that 1 < y, 2 < y, . . . ; i.e., y is an infinite 
"integer". 

If A is in % then the object in *<3l with the name A is denoted by *A. Either 
A or *A can be called standard; *A is also called the nonstandard extension 
of A. One can omit the star for real numbers; in this sense, R C */?. 

The transfer principle gives us a great deal of information about *<3l. One 
cannot, however, describe in a formal way what one means by all subsets of 
even the natural numbers; "all subsets" is a primitive notion. In *#l, therefore, 
we can cheat. If A is an infinite set in % and P(A) is its set of all subsets in 
the usual sense, then *(P(A)) £ P(*A). An object a in *<$, is called internal if 
there is some object A in <3l such that a E *A, otherwise a is called external. 
In *R, the symbol V is interpreted as meaning for all internal . . . , and 3 is 
interpreted as meaning there exists an internal . . . . The set of infinite natural 
numbers, for example, is external. 

Chapter 2 gives an introduction to the nonstandard real numbers using an 
ultrapower construction. Ultrapowers have the additional property that every 
sequence al9 a2, ... in the extension *A of a standard set A is the restriction 
to TV of an internal mapping from *N into *A. In an ultrapower the e-relation 
is not the usual one. However, starting with "sets" of individuals and replacing 
each such object A with the set of all individuals a such that a E A in the 
sense of the ultrapower, one can form a set theoretic structure in the usual 
sense. (See [6, pp. 28-29].) 

Chapter 2 is a fairly good introduction to the nonstandard real numbers. 
However, the paragraph on p. 42 concerning what the authors call internal 
and external languages is very misleading. Statements that should be called 
standard such as "5 E *TV" are called internal, and some statements that 
should be called internal such as "y E *TV", where y is infinite, are called 
external. 

Let *<3l be a nonstandard model for the real numbers in the sense described 
above; *<3l is a nonarchimedean field. If a E *R is not infinite, then a differs 
from a unique standard b E R by an infinitesimal. In this case, we write 
a ^ b and b = °a. If ƒ is a real-valued function on R, *ƒ denotes the extension 
of ƒ to *R. 

Fix a positive infinitesimal p E *JR. Let M0
P or just M0 be the set 

{t E *R: \t\ < p~n for some n E TV), and let M( or just Mx be the set 
[t E *R\ \t\ < pn for every n E TV}. One calls a and b in M0 equivalent and 
writes a^b if a-bE:Ml. The set of equivalence classes PR = M0 - Mx, 
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discussed in Chapter 3, is a nonarchimedean field with nonarchimedean 
valuation v given by i/p(0) = +00 and 

V9{OL) = °(*logp |x|) 

for a ¥= 0 and x E a. Both L and L' are isomorphic to a subfield of PR; for L 
use the map ^2^ anx"n ~* ^N an[pYn- K" / is real-valued and sufficiently 
smooth on R, then whenever x « y in M0, *ƒ(•*) ^ *f(y) *n M)- ^n ^^ s case> 
there is a natural extension of f to PR D R and thus to L D R. These 
extensions are explored by Robinson in [9], which is also an excellent 
introduction to nonarchimedean fields in general and L and PR in particular. 

To return to the Popken space P, let *R denote the infinite positive elements 
of *R. A function ƒ is asymptotically finite if and only if *ƒ (y) E M$y for each 
y E *R. If ƒ and g are asymptotically finite and equivalent (i.e., \f — g\ 
= 0(x~") for each n G N\ then | *f(y) - *g(y)| G M / / Y for each y G */?. 
Thus, up to equivalence, each f E P takes "its" value *ƒ("/) in Y^ f° r e a c h 
y G *.R. Moreover, the Popken norm <j> can be obtained by setting 

<K/)= suP|v(y)L. 
ye* A 1/Y 

In analysis, standard definitions can often be given a quite different and 
more intuitive form using nonstandard notions. For example, a standard 
function ƒ with domain D C Ris continuous at a G D if and only if for each 
x G *D with x c^ a, *f(x) — ƒ (a). There are a large number of such applica­
tions of *R to asymptotic expansions in the last two chapters of the book. 
Again, one wishes there were much more. Nonstandard analysis has pro­
gressed far beyond this stage in many areas of mathematics. It will be up to 
others, however, to make that kind of progress here based on the foundation 
established by Lightstone and Robinson. 
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