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already have formed an opinion about the former question. 
D.A. I am beginning to infer that when the London Mathematical Society 

decided to publish this work, they didn't seek your opinion? 
E.W. I do wish you wouldn't ask me about matters which are confidential. 
D.A. I go on to infer that they must have preferred some other opinion; 

perhaps someone better qualified by being closer to the subject or more 
sympathetic to it? 

EXPERT WITNESS. This conjecture follows from the former one. 
DEVIL'S, ADVOCATE. Let us try another expert witness; they come two a 

penny. 
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xii + 123 pp., $17.50 (cloth) and $8.50 (paper). 

Ever since the physicists' discovery that a logically coherent and physically 
acceptable treatment of atomic and subatomic systems has to be based on 
principles that are profoundly different from those of classical physics, the 
problem of understanding and clarifying these principles has engaged the 
attention of many mathematicians, theoretical physicists, and philosophers. 
That such discussions continue to go on, and often reveal new aspects fifty 
years after the original discoveries of the physicists, indicates the remarkable 
nature of these new ideas as well as the extent of their departure from classical 
lines of thought. 

To trace the origin and development of these ideas is a formidable task; in 
the framework of the present review it is an impossible one. Suffice it to say 
that the tremendous difficulties in explaining the mass of spectroscopic data 
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based on a logically sound conception of the atom led the physicists through a 
succession of approximations culminating in the currently held quantum 
theoretic view of the atomic world. Bohr's orbit rules, his complementarity 
principle, the mechanics of Heisenberg and Schrödinger, the Dirac equation 
of the relativistic electron, Pauli's exclusion principle, and so on, represent 
various stages in this continuing evolution. The end is even now not in sight 
because there are still serious difficulties in building a coherent picture of the 
elementary particles and their interactions. 

Throughout this period, the logical foundations of quantum theory have 
been subjected to very close scrutiny. The aim of most of the investigations 
has been to gain an understanding of the strange and remarkable manner in 
which the physical observables and states of a microscopic system are 
interconnected, and of the startlingly nonclassical nature of the mathematical 
objects used to represent them. In classical mechanics, when we want to study 
a finite system of particles, we introduce the phase space P of the system which 
is a 27V-dimensional C00 manifold; the states of the system are represented by 
points of P, its observables by real functions on P, and its dynamical evolution 
by a suitable one-parameter group of diffeomorphisms of P; if F is an 
observable and a a state, represented by the function ƒ and the point 
x E P, f(x) is the value of F when the system is in the state a. In statistical 
mechanics we work with mixed states which are represented by probability 
measures on the a-algebra of Borel subsets of P; observables are still functions 
(Borel measurable) on P; if the observable F and the state a are represented 
by the function ƒ and the probability distribution £, the probability distribution 
of Fin the state a is the probability measure E v-> £(f~{(E)) on the a-algebra 
S3(R) of Borel subsets of the real line R. In quantum mechanics things are 
completely different. Corresponding to the given microscopic system which is 
the object of study, there is a complex Hubert space (usually separable) $; the 
observables of the system are represented by (not necessarily bounded) 
selfadjoint operators on $, while its states are represented by the one-
dimensional subspaces of § (= rays), i.e., by the points of the projective space 
$P($) associated with $. In quantum statistical mechanics where mixed states 
are required, the states are represented by von Neumann operators on $, these 
being defined as the bounded selfadjoint operators which are > 0, are of trace 
class, and have trace 1. If the observable a and the state a are represented 
respectively by the selfadjoint operator A and the one-dimensional subspace 
S, then quantum mechanics allows us only to calculate the probability 
distribution of a when the system is in the state a; this is the probability 
measure E H> (PE

A cp, <p> on the a-algebra 93(R), where y is a unit vector in S 
and PA is the spectral measure of A. Note that this is also describable as the 
probability measure E H> t r ( ^ Ps) where Ps is the orthogonal projection 
$ -» S; if a is a mixed state represented by the von Neumann operator D, the 
probability measure of a in a is given hy E \-> Xr{P^ D). The dynamics of the 
system is represented by a one-parameter group / H> Ut (-oo < t < oo) of 
unitary operators of §; the action of this group on 93($) then describes the 
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evolution of the pure states of the system with time. If the system has some 
symmetries governed by some symmetry group G, this is put in display by 
specifying a homomorphism of G into the group of all automorphisms of 
$($); in many cases, this homomorphism comes from a unitary representation 
of G in $. 

The foregoing descriptions of observables, states, and their probability 
distributions are further supplemented by certain rules of interpretation which 
tell us something about the nature of the measurement process in quantum 
mechanics. As a rule, measurements disturb the state in an unpredictable 
fashion, so that the principle of causality is applicable to miscroscopic systems 
only in the periods where no measurement is made. If a is a physical 
observable with possible values Xl5 X2, . . . . . . . ^ *s represented by a self ad­
joint operator A having discrete spectrum and eigenvalues \,\2> • • • > ^ ^(\?) 
is the eigensubspace of A corresponding to Xn and the state of the system is 
represented by the one-dimensional subspace S, then the measurement of a 
will yield the values Xj, X2, . . . with respective probabilities px, p2, . . . where 
Pn ~ (Ps(\n)*P9(py> *P being a unit vector in S, and Ps(\n) ^

e orthogonal 
projection $ -> S(Xn). The effect of measurement is to force the state into a 
state contained in one of the S(Xn). In particular, if S C S(Xn), the measure­
ment of a is certain to yield the value Xn ; we say then that a has a sharply 
defined value, namely Xrt, in S. Furthermore, if b is another observable with 
values fjtp ft2, . . . represented by a self adjoint operator B, there may exist no 
state in which both a and b have sharply defined values; in order that $ admit 
an orthonormal basis of such states it is necessary and sufficient that A and B 
commute. The restriction to operators with discrete spectra is made only for 
simplicity of exposition and there is no difficulty in including more general 
observables. 

There is no need to emphasize that this is an astonishing set of rules 
constituting a severe departure from classical physics. One of the most 
striking consequences of these rules is that it is in general impossible to 
"prepare" a system to be in a state in which all the observables have sharply 
defined values. The Heisenberg uncertainty principle, for instance, sets 
quantitative limits to the precision with which the position and momentum of 
a microscopic particle may be simultaneously measured. As another conse­
quence may be mentioned the fact that an object such as the electron or the 
photon has both particle and wave properties, i.e., that it has states in which 
corpuscular properties are exhibited and also states in which wave phenomena 
arise. The elegant and simple mathematical manner in which quantum theory 
can explain this complementarity is one of its great accomplishments. 

Pioneered by Bohr and developed further by Heisenberg, Schrödinger, 
Dirac, Pauli and others, these principles and their consequences have succeed­
ed in explaining and predicting a truly impressive range of phenomena. 
However, these rules and interpretations were so revolutionary that they 
provoked fierce debate and controversy ever since they emerged out of the 
chaos and excitement of the early years of this century. The resulting scrutiny 
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of the foundations has been very beneficial to the theory, leading to the 
creation of a large body of mathematical, physical, and philosophical litera­
ture, attempting to show, at least in broad outline, the inevitability of the 
fundamental rules and their interpretations. 

From the mathematicians' point of view, the central contributions in this 
area came from John von Neumann, and were set forth in his famous book 
Mathematische Grundlagen der Quantenmechanik, and in a number of papers, 
of which the one with Birkhoff (Ann. of Math. 37 (1936)) is most relevant for 
us. His main ideas may be briefly summarized as follows. Let @ be the 
physical system to be investigated. There is then associated to © a partially 
ordered set S = S(@) whose members correspond to the experimentally 
verifiable statements concerning @; the ordering in S corresponds to the 
relation of implication. £ also admits an orthogonal complementation corre­
sponding to negation. If @ is classical, S would be a Boolean a-algebra. 
However, if @ is a quantum mechanical system, S would be highly nondistrib-
utive and would resemble a projective geometry. Observations of physical 
observables are then processes that single out specific Boolean a-algebras 
contained in 2; but, in general, these various a-algebras cannot all be 
contained in a single Boolean a-algebra, and the lattice-theoretic structure of 
Q is expressed essentially in the manner in which the various Boolean a-
algebras contained in £ interlock with each other. In particular, the presence 
of Boolean a-algebras not contained in a single one corresponds to the 
phenomenon of complementarity of @. Ü is called the logic of @. 

This axiomatic point of view led von Neumann to the problem of charac­
terizing, within the category of logics (= partially ordered sets with suitable 
orthocomplementations), the subcategory of projective geometries associated 
with Hubert spaces; it is convenient to refer to the latter as standard logics. The 
work of von Neumann showed the existence of many logics other than the 
standard ones (see his Collected Works); however, none of these others is as 
simple as the standard ones. 

Interest in the axiomatic viewpoint revived after the Second World War, 
especially the late fifties and early sixties. In addition to the papers of Irving 
Segal, there were the lectures and articles of George Mackey, especially his 
book (Benjamin), and the publication, by Gleason, of his theorem determining 
all the states of a standard logic. My own interest in the subject dates back to 
this time; and I worked out, in two volumes (Van Nostrand), the main features 
of the axiomatic approach, including one of the notable contributions to the 
axiomatic approach that came out at that time, namely, the characterization, 
due to Piron, of the standard logics within the category of all logics. The entire 
subject is still very active; among its most interesting recent developments are 
the investigations of Kochen, and the theorem of Lodkin determining all the 
states of the logic of projections in an arbitrary von Neumann algebra (A. A. 
Lodkin, Functional analysis and its applications (Russian), 8, 4 (1974), 54-58). 

This brings us to the book under review in which Professor Piron has 
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presented his view of the axiomatic foundations of quantum physics. It is a 
brief exposition (123 pp.). It begins with a quick summary of the main features 
of classical mechanical systems emphasizing the fact that their logics are 
Boolean algebras. It then goes on to discuss a suitable cateogry of partially 
ordered sets suitable for representing the logics of quantum mechanical 
systems. It contains, in this general context, descriptions of the notions of 
states and observables. Its highlight is a proof of Piron's own theorem singling 
out the standard logics by suitable lattice-theoretic properties. The book 
concludes with a discussion of particles, both classical and quantum mechan­
ical, obeying the Galilean principle of relativity. 

So far as the essential content of this book is concerned, there is nothing in 
it that is not already covered (with much more detail) in the books of Mackey 
and the reviewer. It would have been very useful if Piron had gone into some 
of the aspects not treated fully in these earlier works. It is also unfortunate that 
Piron does not make any effort to discuss the phenomenological basis of his 
axioms. While an "explanation" of the axioms is nowadays regarded as 
unnecessary in a mathematical treatise, it is still an important part in any 
exposition of the mathematical nature of physical theories; in the present 
situation where many departures from long accepted patterns of thought are 
demanded of the reader, the physical basis of the axioms is, at least in this 
reviewer's opinion, a crucial part of the treatment. Piron's exposition therefore 
takes on a dogmatic character. For instance, he assumes that the logic of a 
system is a complete atomic lattice. In fact, he proves that it is a complete 
lattice and postulates its atomicity. As far as the atomicity is concerned, no 
arguments are given as to why this is a reasonable assumption. It excludes, for 
example, logics arising out of the projections in a von Neumann algebra which 
is not of type I. Already at the classical level, this assumption forces Piron to 
consider only probability measures defined on all subsets of the phase space; 
as such measures are atomic, this would make the theory too weak to be of 
any use in statistical mechanics, and so Piron makes use of artificial concepts 
and definitions to introduce nonatomic measures. As for the fact that for Piron 
the logic of a system is always a complete lattice (Theorem 2.1), it is based on 
a definition of the infimum of a set of experimental statements that this 
reviewer did not find convincing at all. This attitude of Piron is in sharp 
contrast with the widely held view (going back to the Birkhoff-von Neumann 
paper) that there is no convincing phenomenological explanation behind the 
requirement that the logic be a lattice (not to mention a complete one) and 
that it is important to find one. Indeed, when we consider two elements of a 
logic that cannot be imbedded in a single Boolean algebra, they are nonclas-
sically related, and are already illustrative of the phenomenon of complemen­
tarity that is so characteristic of microscopic systems; and so, any phenomeno­
logical understanding of their infimum must come to grips with this aspect of 
quantum theory. It is the opinion of the reviewer that this question cannot be 
studied by working with the logic of a system in isolation; it appears necessary 
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to introduce the states also, and develop the theory along lines in which both 
the logic and the space of its states play equally fundamental roles. The 
phenomenon of complementarity and the problems connected with the 
existence of a lattice structure on a logic then appear to emerge more clearly 
out of the manner in which the observables and states are interconnected. The 
expositions of Mackey and Zierler are of this type. To dismiss one of the 
crucial aspects of the subject in such a perfunctory manner as Piron has done 
is, at the least, very misleading. I would also like to point out that Piron makes 
no reference to the work of Zierler on the characterization of standard logics, 
although Zierler's work was done more or less simultaneously with Piron's and 
independently of it. There are many such instances of a lack of proper care in 
giving references to the work of others scattered throughout this book, making 
this exposition somewhat distorted. The reader who wants to be informed in 
depth on the various aspects of the subject and the extensive literature on 
these questions would do well to consult the volume entitled The logico-
algebraic approach to quantum mechanics, edited by C. A. Hooker (D. Reidel 
Publishing Company). 
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Non-archimedean fields and asymptotic expansions, by A. H. Lightstone and A. 
Robinson, North-Holland Mathematical Library, vol. 13, North-Holland/ 
American Elsevier, Amsterdam and New York, 1975, 204 + x pp., $24.95. 
The aim of this short book is to show that nonarchimedean fields and 

nonstandard analysis form an excellent setting for the study of asymptotic 
expansions. The authors have been quite successful in achieving this goal. One 
wishes there were more, but the terminal illness of Abraham Robinson, who 
wrote the first draft, prevented further collaboration on Harald Lightstone's 
final manuscript. Since both authors are now deceased, it will be up to others 
to further their ideas. 

An asymptotic expansion for a function ƒ with respect to an "asymptotic 
sequence" of functions <f>. is a formal series 2/^o a /^ / s u c^ ^ a t whüe the 
sequence of partial sums Sn(x) = 2"=o ai<l)i(x) maY diverge at a given x, there 
may yet exist an nx (in practice, small) such that Sn (x) is a satisfactory 
approximation to ƒ (JC). For the most part, the book deals with real, rather than 
complex, valued functions. A sequence of real-valued functions <f>0, <f>x, . . . is 
called an asymptotic sequence if there is a neighborhood of +oo in the real 
line R on which each ty is defined and nonvanishing and for each n in the 
natural numbers TV = {0, 1, 2, . . . } we have 0W + 1 = o((j)n), i.e., 
lim^oo <pn 4. j (x)/<pn(x) = 0. Given an asymptotic sequence {0,.}, a sequence of real 
numbers {a,-}, and a real-valued function ƒ defined on some neighborhood 
(7, +oo) of +oo in R, the formal sum 2 #/0/ is called an asymptotic expansion 
for/, and we write/— 2 at<f>i9 if for each n G TV, ƒ - 2o ai$i = ö(0«)- 0 n e 

may think of the n\\i error as being a higher order of infinitesimal than the last 
term adjoined to the series. 


