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The term univalent applied to a mapping means simply that it is one-to-one. 

However the combination "univalent functions" has a much more specific 
meaning, referring to regular (holomorphic) or meromorphic functions which 
determine one-to-one mappings. They may be considered in various domains 
of definition, even on a Riemann surface, but attention is often directed to 
certain specific classes; two of the most important are denoted by S and 2. 
The first consists of functions f(z) regular and univalent for \z\ < 1 with 
Taylor expansion about the origin 

(1) z+%Anz". 

The second consists of functions ƒ (z) meromorphic and univalent for \z\ > 1 
with Laurent expansion about the point at infinity 

(2) z+%cnz-". 

The theory of univalent functions had its beginnings in results of Koebe 
obtained in 1907 and 1909 which may be stated as follows. 

I. There exists an absolute constant K such that for f E S the function values 
w = f(z) for \z\ < 1 fill the circle \w\ < K where K is the largest value f or which 
this is true. 

II. There exist positive quantities mx (r), Mx (f) depending only on r such that for 
ƒ e S, \z\ = r, 

mx{r) < \f(z)\ < Mx(r). 

III. There exist positive quantities m2(r), M2(r) depending only on r such that 
for f G S, \z\ = r, 

m2(r) < |/'(z)| < M2(r). 

These results aroused great interest and a number of people began to work 
in the field. In particular, the first consistent method was introduced, the area 
method, and used by Gronwall, Bieberbach and Faber. This method utilizes 
the simple fact that the area enclosed by the image under ƒ G 2 of the circle 
\z\ = r (r > 1) is positive. Expressing this in terms of the coefficients of ƒ it is 
easy to obtain the Area Theorem: 

2 n\cn\
2 < 1. 

From this one can easily prove that K = \ in I and obtain the precise 
expressions for mx(r), Mx(r)9 m2(r), M2{r) in II and III. Further, Bieberbach 
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proved that, for ƒ e S, \A2\ < 2 and conjectured that, in general, \An\ < n. 
Since it was made in 1916 this conjecture has been a standing challenge and 
has inspired, directly or indirectly, many of the subsequent developments in 
the field. While it has been verified for a few initial values, for general n only 
less precise estimates have been obtained. 

In the intervening years a number of more sophisticated methods have been 
introduced: Löwner's parametric method, the method of the extremal metric, 
the method of contour integration and the variational method. For a brief 
description of these methods we refer to the reviewer's book Univalent 
functions and conformai mapping. It should be remarked that Golusin resumed 
the study of the area method in connection with multivalent functions (the 
same convention being understood as for the term univalent) and quite 
recently a more sophisticated version of the area method has proved very 
fruitful, two slightly different forms being inspired by the papers of N. A. 
Lebedev and the reviewer. All of these methods are essentially geometric, that 
is, they concentrate on the aspect of a univalent function as a mapping rather 
than on its representation in analytic forms. 

Another line of investigation has been to study subclasses of the family S. 
The two most familiar such subclasses are K (convex functions), consisting of 
the functions in S mapping \z\ < 1 onto a convex domain (in these notations 
we follow Schober's symbols) and S* (starlike functions), consisting of the 
functions in S mapping \z\ < 1 onto a domain starlike with respect to the 
origin (a domain D is said to be starlike with respect to the origin if for every 
point w0 of D the segment joining w0 to the origin lies in D). These families 
have an important connection with the family P of functions ƒ regular in 
\z\ < 1 with 6Af > 0 and /(O) = 1. Other families worthy of note are the real 
univalent functions SR consisting of those functions in S with all An real, the 
typically real functions TR consisting of functions f{z) regular in \z\ < 1 
normalized as in (1) with (Sz) ($f(z)) > 0 for all z in |z| < 1 and the close-to-
convex functions C consisting of functions ƒ (z) regular in \z\ < 1 normalized 
as in (1) with ${{f'{z)/em<p'(z)\ > 0, for some real a and <p E K. The standard 
method of treating these families is to use the geometric properties to derive a 
characteristic analytic condition from which further properties are derived. 

Quite recently a number of authors, with Kühnau probably the first, have 
studied the subclasses SK and 2K of functions of S or 2 which admit a K-
quasiconformal extension to the complement of \z\ < 1 or \z\ > 1. In case a 
mapping is differentiate the condition for it to be A^-quasiconformal is that 
the ratio of maximal to minimal directional distortion at each point is at most 
K (K > 1). In case the mapping is not required to be differentiable there are 
a number of characterizations, all equivalent but too technical for the space at 
our disposal. 

Schober's book is entitled Univalent functions-selected topics. It is in no sense 
a general treatment of univalent functions but the various topics included 
have, for the most part, a unifying theme: the book might have been subtitled 
What functional analysis can do for univalent functions. At first glance families 
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of univalent functions would not seem very appropriate subjects for the 
application of functional analysis since they are not linear spaces in any 
natural sense. However, there are several ways to proceed. Many of the 
particular function classes above are closely related to P which is a convex 
subset of a linear space. Again the family of univalent functions in a domain 
can be regarded as a subset of the family of functions regular in that domain 
(with any appropriate normalizations). The latter becomes a topological vector 
space when limits are understood in the sense of uniform convergence on 
compact subsets. 

The first major selection of topics utilizes the methods of convexity theory 
and extreme points. An extreme point of a subset A of a linear space is one 
which admits no non trivial representation Xx + (1 — X)y, x,y E A,X E (0, 
1). The set of extreme points of A is denoted by EA. The key result is then that 
if A is a compact subset of a locally convex linear topological space X and if 
x' is a continuous linear functional on X, then max^ <3{,x' = max£ 91 x\ In the 
first chapter the author, following F. Holland, by an explicit manipulation 
identifies the extreme points of the set P as a subset of the space of functions 
regular in the unit circle. They are indeed the functions (1 4- v)z)/(\ - rjz), |TJ| 
= 1. A theorem of Choquet then implies the Herglotz representation: if ƒ E P 
there exists a unique nonnegative Borel measure \i (probability measure) such 
that 

Of course the procedure could be reversed, the Herglotz representation 
obtained in the usual way and the extreme points deduced from it. Chapter II 
contains applications of this and similar results to the families S*, K, SR, TR, 
C and several additional families. In particular, ƒ E S* if and only if there 
exists a probability measure /x such that 

f(z) = z expl -2fM=l !og(l ~ t)z)diiV 

This is used to obtain various properties of starlike functions, for example, 
their extreme points and the sharp bound for their coefficients in the 
representation (1), namely \An\ < n. Similar results are given for the other 
classes. In particular, there is given an inequality for convex functions due to 
Ruscheweyh and Sheil-Small from which they deduced the proof of the Pólya-
Schoenberg Conjecture: if ƒ(z) = ^0anz

n E K, g(z) = 2„°°=o bnz
n E K, 

then 2^=o an^nzn G & (as ^ e author, following their work, does in Chapter 
m). 

In the context of the above function families the methods of convexity and 
extreme points provide a very nice unified exposition of the results, including 
many originally derived by other methods. The success basically rests on the 
fact that the required extreme points can be explicitly determined and are not 
too numerous. It is not difficult to find other contexts where one or the other 
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condition fails and the role of extreme points for certain extremal problems is 
much less incisive. 

The second major selection of topics attaches to the consideration of 
continuous linear functional on the space of functions regular on a domain 
D (notation H(D), functional H'(D)) regarded as a topological vector space 
as indicated above. The primary result is an old, but not sufficiently well-
known, result of Caccioppoli characterizing such functionals: for a domain D 
in the complex plane £, L G H'(D\ there exists a function g regular in 6 - D 
(i.e., extending to an open set Og containing & - D and regular in each 
component thereof) vanishing at oo and a finite system of rectifiable Jordan 
curves C in D n Og such that for ƒ G H{D\ 

L(f) = (2m)-lfcf(z)g(z)dz. 

This is used in two contexts. In one the standard normalization of univalent 
functions at a point (as in expansion (1)) is replaced by normalization 
assigning the values of two linear functionals. Further the problem of 
maximizing <31L for such a linear functional on a family so normalized is 
considered. 

In the first instance the main question is when a family so normalized is 
compact. A fairly elementary sufficient condition is obtained which includes 
some of the desired standard results but not others, for example, the 
compactness of 2', the subset of 2 with c0 = 0 in (2), for which it is necessary 
to revert to the standard proof. A partial converse is also obtained. For some 
such families it is shown that there is an analogue of Brickman's result on 
extreme points for the family S: the corresponding functions map the unit disc 
onto a domain bounded by a monotone arc (i.e., one which meets each circle 
centre the origin at most once). There is also given a number of geometric 
properties of functions satisfying this condition. 

In dealing with the problem of maximizing <31L on a family f of univalent 
functions normalized by two linear functionals (and assumed to be compact) 
the essential technique is to obtain a variation of functions within the family 
f. A necessary condition for extremality then takes the form that a linear 
functional depending on an extremal function is nonnegative. This is manifest­
ed for a number of elementary variations and, in Chapter 10, for the Schiffer 
boundary variation. The latter leads to conditions of the form that the image 
domain under an extremal function is bounded by trajectory arcs of a 
quadratic differential (in this context this means arcs satisfying a differential 
equation r(w)(dw/dt) = 1 with a rational function r(w) and a suitable 
parameter i). A number of known results for extremal functions for %An for 
ƒ G S are extended to this situation under suitable conditions, including the 
fact that if a boundary component contains a zero of the quadratic differential 
it is rectilinear. 

Some similar problems are considered for nonlinear functionals. This leads, 
in particular, to the existence of certain canonical conformai mappings. (In the 
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standard usage a conformai mapping is just the same as a univalent function 
but perhaps the use of distinct terms is justified as representing somewhat 
different viewpoints.) A representative result is that for any plane domain D 
containing the point at infinity and for z0 E D there exists a function g 
univalent in D with the expansion (2) at infinity, g(z0) = 0 and mapping D 
onto a domain bounded by radial slits. Nothing is said about the correspond­
ing uniqueness results and, indeed, this method seems little suited to treat 
them. (They are very significant for domains of infinite connectivity.) There 
are also derived a number of results more usually obtained by generalizations 
of the area method. 

The third major selection of topics deals with the families SK, 2^ and 
certain related families. While in the preface the author characterizes the 
treatment as variational it is very definitely a functional analytic sort of 
variation as opposed to the distinctly geometric type of variation first 
attempted by Schiffer for these classes which encountered serious technical 
difficulties. This technique is used to derive some general remarks on varia­
tional problems for functions with quasiconformal extensions and to treat a 
number of explicit bounds for the initial coefficients in their series expansions. 
The author does not delineate the exact extent to which these bounds have 
been pushed but the most sophisticated result given here appears to be the 
bound for \A2\ in the expansion (1) for ƒ G SK. There are also derived some 
results analogous to those usually associated with the area method for 
functions in S and 2. The area method leads to a very simple proof of 
\A4\ < 4 for ƒ G S but the analogous technique is much less successful here. 
This reinforces the suspicion that the success in the former case is somewhat 
accidental. 

Overall the book collects and expounds a variety of results which would not 
otherwise be accessible except in the original memoirs. The exposition is 
generally very careful and the author makes an effort to supply at least a 
survey of material utilized from other sections of mathematics. The brief 
presentation of results from convexity theory in Appendix A gives a good 
feeling for the material and makes the applications in the text seem natural. 
The survey of results for quasiconformal mappings in Chapter 12 is much less 
successful. The reviewer feels that it fails to provide the intuitive feeling that 
would be so useful in the following chapters. If the presentation throughout 
the book has a weakness it is in a striving for what seems occasionally like 
excessive generality. It is true that this sometimes manifests new facets not 
present in the more familiar cases but sometimes the treatment of a more 
special case first would have made it easier to recognize what is going on. 
Specifically the beginning of Chapter 13 is at times pretty murky and only in 
reading the applications of Chapter 14 are some of the concepts clarified. 
However this tendency does not detract substantially from the interest and 
usefulness of the book/ It should stimulate activity in a number of the 
questions presented. 

JAMES A. JENKINS 


