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FUNCTIONS AND CORRESPONDENCES IN A FINITE FIELD 

BY L. CARLITZ1 

1. Introduction. It is well known that any function from a finite field into 
itself can be represented by a polynomial with coefficients in the field. More 
precisely, if the field is of order q, then the function is represented by a unique 
polynomial of degree less than q. Conversely, any field with the property that 
any function from the field into itself can be represented by a polynomial 
with coefficients in the field, is necessarily finite [14]. It has been proved 
recently [1], [16] that if a ring R with identity has the property that any 
function from R into itself can be represented by a generalized polynomial, 
then R is isomorphic to the matric ring (GF(q))n, for some prime power q and 
some n > 1. As customary, we denote by GF(q) the finite field of order q. By 
a generalized polynomial is meant a sum of multinomials of the form 

a0x
eiaxx

62 • • • ak_xx
6kak, 

where a,- E R, et > 0 and k is arbitrary. 
With every function ƒ from Fq = GF(q) into itself we may associate a set of 

numbers av a2, . . . , ak G Fq and a partition [5]-[8], [13] 

(1.1) Fq-AXUA2\J • • • \jAk9 

where 

(1.2) AtnAj-Q> (i*j)9 

the sets At are nonvacuous and 

(1.3) ƒ(*/ ) -«% ( 6 , E 4 ; i - l , 2 , . . . , * ) . 

For example, for the function ƒ (x) = xq~l, we have k = 2, ax = 0, a2 = 1, 
Ax = {0}, A2 = {a\a G F , a ^ 0}. On the other hand, for the function 
f(x) = xq~2, k = q and each At consists of a single element. Thus xq~2 is a 
permutation function. Clearly, for any permutation function, the number of 
sets At in the partition (1.1) is equal to q. 

We can generalize the above in the following way. Let 

(1.4) Aù9Av...9Ak; B09Bv...,Bk 

denote partitions of Fq. It is assumed that each of the sets 

(1.5) Al9...9Ak9 Bl9...9Bk 

is nonvacuous; however A0, B0 are unrestricted. Then (by the Lagrange 
interpolation formula for several variables) there exists a polynomial [9] 
f(x,y) G Fq[x, y] such that 
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(1.6) f(a9 b) - f ° {ü G ̂  * G *" l < '" < *}' 
| 1 (otherwise). 

We shall say that the polynomial f(x, y) characterizes the correspondence T 
induced by the partitions (1.4); the integer k is called the rank of the 
correspondence. 

A polynomial h(x, y) G Fq[x,y] is said to be admissible for the correspon­
dence T defined by (1.4) if it satisfies 

h(a, b) - 0 (a G 4 , 6 G 2?„ 1 < i < k), 

T̂  0 (otherwise). 

A polynomial is admissible if it is admissible for some correspondence. 
It follows at once that if h(x9 y) is admissible for T then 

(1.8) f{x9y)-(h(x,y))<-1 

satisfies (1.6). 
It is to be understood that (1.8) asserts that the two functions are equal; the 

precise relationship between the polynomials is 

f(x9y) = (h(x9y)Y'1 (xq - x9y
q - x). 

As an example of an admissible polynomial consider h(x9 y) = xq~x — 
yq~\ It is easily verified that k = 2, A0 = B0 = 0, Ax = Bx = {0}, A2 = B2 

= Fq\{0}. 
As a second example, the polynomial h(x9 y) = 1 - xq yq is also 

admissible. In this example k = 1, A0 = B0 = {0}, ^ j = 5j = F^ \ {0}. 
As example of a polynomial that is not admissible (for any correspondence) 

we cite 

(1.9) h(x9y) = xy. 

A basic problem is to characterize all admissible polynomials. This is 
apparently a difficult problem. For example consider correspondences of 
rank k = q9 so that each of the sets Av . . . , Aq9 Bv . . . , Bq consists of a 
single element, while A09 B0 are vacuous. An admissible polynomial for this 
correspondence is evidently hx(x9 y) = y — \p(x)9 where \l/(x) denotes some 
permutation polynomial. Another admissible polynomial for the same corre­
spondence is given by h2(x9y) = x — \p~l(y), where \p~l denotes the inverse 
of the permutation defined by \p. 

If f(x)9 g(x) are arbitrary polynomials in F [x], it is not difficult to show 
that 

(1.10) h(x9y)-f(x)-g(y) 

is admissible for some correspondence. Conversely, given any correspondence 
of rank ¥= q — 1, it has been proved that there exists an admissible poly­
nomial of the form (1.10). For rank q - 1, however, an admissible polynomial 
of this type does not exist when A0 =£ 0, B0 ^ 0 ; this is, in fact, the only 
exceptional case. 

The definition of a correspondence can be extended in several directions. 
In the first place, instead of (1-4), we may consider the three partitions of Fq: 
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(1.11) A0, Al9 . . . , Ak\ B09 Bl9 . . . , Bk; C0, CJ, . . . , Ck9 

where 

(1.12) Al9...9Ak9 Bl9...9Bk9 Cv...,Ck 

are nonvacuous while A09 B0, C0 are arbitrary. There exists a polynomial 
ƒ(*, y9 z) E Fq[x9y9 z] such that 

0 (a E Ai9 b E Bi9 c E C„ 1 < / < k)9 
(1.13) f(a9b9c) = . t , A . . 

( 1 (otherwise). 

The polynomial ƒ (x9 y9 z) is said to characterize the correspondence defined 
by (1.11). 

A polynomial h(x9 y, z) E Fq[x9 y9 z] is admissible for the correspondence 
defined by (1.11) provided 

h(a9 b9 c) = 0 (a G Ai9 b E Bi9 c E Ci9 1 < / < A:), 

T̂  0 (otherwise). 

It follows that h(x, y9 z) is admissible for the correspondence defined by 
(1.11) if and only if 

0-15) (h(x9y9z)y-l-f(x9y9z)9 

where f(x9y9 z) satisfies (1.13). 
For brevity the correspondence defined by (1.4) may be called a (1, 1) 

correspondence, the correspondence defined by (1.11) a (1, 1, 1) correspon­
dence. In either case k is the rank of the correspondence. 

In the next place let F™ denote the direct product of m copies of Fq. 
Consider the partitions 

(1.16) Fq
m - A0 u Ax U • • • U Ak9 F ; = 5 o U 5 , U " - U Bk9 

where 
0-17) Al9...9Ak9 Bl9...9Bk 

are nonvacuous while A0, B0 are arbitrary. There exists a polynomial 

f(x9 y) E Fq[x9 y], 

where x = (x„ . . . , xm)9 y = (yl9 ...9yH) such that 

0 (a E Ai9 b E Bi9 1 < i < k)9 
(1.18) /(a,b) « , t , ^ . , 
v ' J v ' [I (otherwise). 
The polynomial ƒ (x, y) is said to characterize the correspondence defined by 
(1.16). The correspondence defined by (1.16) may be called an (m9 n) 
correspondence. 

A polynomial h(x9 y) E Fq[x9 y] is admissible* for the correspondence 
defined by (1.17) provided 

(1 19) A(a> b ) = ° ( a E A» b E B» l < i < *)• 
¥* 0 (otherwise). 

Hence, h(x9 y) is admissible for the correspondence (1.16) if and only if 

(1.20) (A(x,y)) f - ! - / (x ,y) . 
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It is evident how the notion of correspondence can be extended to r-fold 
partitions: 

(1.21) F? - Ai0 U An U • • • U Aik (/ - 1, 2, . . . , r). 

A correspondence defined in this way may be called an (m,, m2, . . . , rar) 
correspondence. Characteristic and admissible polynomials are defined in the 
obvious way. 

The object of the present paper is to discuss some basic properties of 
correspondences. For the most part we shall confine ourselves to (1, 1) 
correspondences. Also we shall usually state results without proof. For fuller 
details the reader is referred to [2], [3], 

The reader may find it helpful to refer to the numerous examples of 
correspondences given in §§3, 10. 

2. Preliminaries. 

LEMMA 2.1. Let A denote an arbitrary nonvacuous subset of Fq. The poly­
nomial 

(2.1) LA(x)- S { l - ( x - a ) « - ' } 
aEA 

satisfies 

(1 (a G A), 

Let 
(2.3) AQ9Al9...9Ak9 B0,Bv...9Bk 

denote partitions of Fq such that Al9 . . . , Ak9 Bl9 . . . , Bk are nonvacuous 
while A09 B0 are arbitrary. 

THEOREM 2.2. There exists a polynomial f (x9 y) G Fq[x9 y] such that 

0 (a E A„ b G Bi9 1 < / < k), 
(otherwise). 

PROOF. Put 

(2.4) / (a , 6 ) - ( j 

k 

i - i 

where LA(x), LB(y) are defined by (2.1). Then 

1 (a G Ai9 b G Bi9 1 < / < k)9 
g(a' ^ { 0 (otherwise). 

It follows that ƒ (x9 y) = 1 — g(x9 y) satisfies (2.4). 
We have already defined characteristic and admissible polynomials. We 

now state a few properties of admissible polynomials that follow immediately 
from the definition. In the first place, as stated in the Introduction, h(x9y) is 
admissible for the correspondence (2.3) if and only if (h(x9 y))q~x = f(x9 y)9 

where f(x9 y) satisfies (2.4). 
If h(x9 y) is admissible for some correspondence T, and g(x9 y) is a 
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polynomial E Fq[x9y] that never vanishes, then g(x,y)h(x,y) is also admissi­
ble for T. Indeed if h(x,y) is admissible for T, then the polynomial hx(x,y) is 
also admissible for T if and only if there exists some g(x, y) that never 
vanishes such that 
(2.5) h\(x>y) " g(x,y)h(x,y). 

If h(x, y) is admissible for T and <f>(x), \p(y) are permutation polynomials 
such that each Ai is carried into itself by <f>(x) and each Bi is carried into itself 
by \p(y), 0 < i < k9 then the polynomial hx(x, y) = h(<f>(x), \p(y)) is also 
admissible for T. 

If /i(x, y) is admissible for T and $(x) is a polynomial that vanishes if and 
only if x = 0, then hx(x,y) = 0(A (*,>>)) is also admissible for T. In particular, 
the polynomials 

hi(x>y) • (M*^) ) ' ( r = i, 2 , 3 , . . . ) 
are all admissible. 

It should be pointed out that we are using the terms function and polynomial 
interchangeably. Thus, if f(x)9 g(x) are polynomials G Fq[x\ the statement 
f(x) = g(x) is short for f(x) s g(x) (mod ;c* - x). Similarly, for polynomi­
als in several variables, the statement f(x, y) = g(x9 y) is short for 

ƒ(*> y) = g(*> >0 (mod x* - x, .y* - .y). 

A convenient form for the polynomial characterizing the correspondence 
(2.3) is given by the following theorem. 

THEOREM 2.3. Put 

(2.6) 4>t(x) « II (x - a), xpt(y) - ü (>> - *) (0 < i < *), 
ö E ^ 6 6 5; 

k k 

(2.7) n *,(x) - * « - * , n ^oo=/« - j . 
j - 0 y = 0 

Then the polynomial j\x9 y) characterizing the correspondence satisfies 

Conversely, if ^(x), ^(y) are any polynomials satisfying (2.7) and deg ^.(x) > 
0, deg ^i(y) > 0 (1 < i < k), then the partitions defined by (2.6) give a 
correspondence with characteristic polynomial (2.8). 

3. Some examples, (i) If g(x) is an arbitrary polynomial in Fq[x], then 
h(x,y) ** g(x) — y is admissible for some correspondence. For let cl9 . . . , ck 

denote the range of g(x) and put 

Fq * Ax u A2 U • • • U 4k, A- = W s ( 0 = ci) (1 < i < £)• 

Then ^40 is vacuous while 
A: 

* ,«{c ,} (1< i < *), Ü 0 = F ? \ U 5 , 
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(ii) The polynomial h(x9y) = x2 - y2 is admissible. We may assume q odd. 
The sets Ai9 Bt are defined by 

[ ^ = {0}, ^ 2 = { ± 1 } , . . . ; 
\BX = {0}, £2 = { ± 1 } , . . . ; 
[A0 - B0 - 0 . 

(iii) The polynomials A(x, ƒ) = x^yJ, r > 1, s > 1 are not admissible for 
any correspondence. 

(iv) Let h(x9 y) denote a polynomial that never vanishes. Then h(x9 y) is 
admissible. The rank k = 0 and A0 = B0 = i^. 

(v) A(x,7) = 1 — xq~lyq~l is admissible. 
(vi) h(x9y) = xq~l - yq~l is admissible. 
(viii) Let h(x, y) be admissible for the correspondence defined by 

(3.1) A09Av...9Ak; B09Bl9...9Bk. 

Let g(a9 b) =7̂  0 except possibly for some {a, b) such that 

(3.2) a e Ai9 b E Bj (1 < / < A:); 

then /^(A;, y) = g(x, y)h(x, y) is also admissible for T. 
(viii) Let h(x, y) be admissible for T as defined by (3.1). Then the set of 

polynomials 

(3.3) {g(x9y)h(x,y)}9 

where the g(x9 y) vanish only as in (3.2), are all admissible for T. 
(ix) h(x, y) = xq~l is admissible for the correspondence defined by A0 = 

Fq\{O}9Ax = {O};Bo^09Bx^ Fq. 
(x) h(x9 y) = 1 - xq l is admissible for the correspondence defined by 

A0 = {0}, Ax-Fq\ {0}; B0 = 09BX = Fq. 
(xi) h(x9 y) = 1 is admissible for the correspondence of rank 0 defined by 

(xii) xy + 1, xy — 1 are admissible polynomials; however, for # odd, the 
sum is not. Thus the sum of two admissible polynomials need not be 
admissible. 

4. Normal forms. In general, there are numerous admissible polynomials for 
any given correspondence. The following theorem describes a normal form 
that can be found for rank k < q — 1. 

THEOREM 4.1. Let the partitions 
(4.1) A09AX9...9Ak; B09BX9...9Bk 

define the correspondence T.Ifk< q — 1, there exists an admissible polynomial 
of the form 

(4.2) h(x,y) = f(x) - g(y) 

for some f (x) e Fq[x], g(y) G Fq[y]. 

PROOF. Choose k + 2 distinct numbers a0, a'^ ctv ... ,ak £ F , and define 
polynomials ƒ (x), g(y) by means of 
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(C E A0), 
f(c) = 

Jy ' [at (c E Ai9 1 < i < A:), 
M ('Ó (ceB0), 

8{C) \ a, (c E Bi9 1 < / < *). 

Then h(x,y) = ƒ(*) - g(>0 is admissible for I\ 

THEOREM 4.2. Let the partitions Ax, . . . , Aq; Bx, . . . , Bq define the corre­
spondence T of rank q. Then there exists an admissible polynomial 

h(x,y) - f(x) - g(y), 

where f(x), g(y) are permutation polynomials. In particular, we may take 
f(x) - x or g(y) « y. 

PROOF. Number the elements of F so that At = {at}, Bt = {6,.} (1 < i < 
q). Let cx, c2, . . . , ck be an arbitrary numbering of the elements of Fq. Define 
f (x), g(y) by means of 

ƒ(<*) - ci9 g(b,) = c, (1< i < «). 

Then /i(x,.y) = /(x) - g(> )̂ is the desired polynomial. 
For ct = bt, g{y) = y ; for c, - a,-, ƒ(*) - x. 

THEOREM 4.3. Let the partitions 
(4.3) 4 ^ , ...,Aq_x, B0,Bx,...,Bq_x 

define a correspondence of rank q — 1. 77ien, if either A0or B0 is vacuous, there 
exists an admissible polynomial of the form h(x,y) = f(x) - g(y). 

PROOF. 1. Let B0 = 0, A0 J* 0 and let /^ = {tf0, tf„ . . . , aq„x}. Define 
f(x), g(y) by means of 

(c E ^ 0 ) , 

^ ̂  [ a, (c GAi,l<i<q- 1), 

g(c) - a, (c E *„ 1 < i < q - 1). 

Then h(x, y) = ƒ(.*) - g(y) is the desired polynomial. 
2. Let ^40 = ^0 = 0 . Let ax, . . . , a^_! be distinct numbers of Fq and define 

ƒ(*)> SOO by means of 

f(c) - ^ (e E ^., 1 < i < q - 1), 

g(c) = a, (c eBi9l<i<q- 1). 
Then /*(*, >>) = f(x) — g(y) is admissible. 

The remaining theorems in this section are stated without proof. 

THEOREM 4.4. Letf(x) E Fq[x], g(y) E Fq[y]. Then h(x,y) - f(x) - g(>>) 
is admissible for some T. 

REMARK. Either ƒ (x) or g(y) may be the zero polynomial. 

THEOREM 4.5. Let the partitions A0, Ax, . . . , Ak\ BQ9 BX9 . . . , Bk define a 
correspondence T. An admissible polynomial of the form h(x,y) = f(x) - g(y) 
exists if and only if 
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(i) k 7*= q - 1, ör 
(ii) k = # - 1, A0 or B0 = 0. 

It can be verified that 

ƒ*(*,>>) - (1 - x*~l)(l - y«-1) + (x - j ;)*"1 

is admissible for the correspondence defined by 
F

q = {̂ o = 09al9a29 . . .,aq_x}9 

4 = Bt - {a,} (0 < / < 9 - 1). 

This example falls under the exceptional case of Theorem 4.5. By means of 
the above h(x, y), the following theorem can be proved. 

THEOREM 4.6. In the exceptional case of Theorem 4.5, that is k = q — 1, 
A0^= 0, B0^ 0, an admissible polynomial is furnished by 

h{x,y) - {1 - <*>*-'(*)}{1 - ^ - ' 0 0 } + {*(*) - *O0}«-\ 

wAere <£>(*)> *K>0 denote permutation polynomials. 

THEOREM 4.7. Letf(x) — g(y) be admissible for the correspondence of rank q 
defined by Av . . . , Aq; Bx, . . . , Bq. Then all admissible polynomials of the 
form fx(x) - g{(y) are given by fx(x) = <Hƒ(*)), gx{y) = <Kg(y))> where <j>(x) 
is a permutation polynomial. 

5. Admissible polynomials. Let a correspondence be defined by means of 
the partitions 
(5.1) A0,Ax,...,Ak; B0,BX9...9Bk9 

where 

(5.2) \At\=mi9 |2?,|-*, (0 < i < k). 

We shall say that two admissible polynomials are equivalent if they are 
admissible for the same correspondence. Thus the set of all admissible 
polynomials (for a fixed Fq) breaks up into a number of equivalence classes. 

THEOREM 5.1. Two admissible polynomials hx(x,y), h2(x9y) are equivalent if 
and only if 

(53) (hl(x9y)y-l=(h2(x9y)y-\ 

THEOREM 5.2. The number of equivalence classes of admissible polynomials is 
equal to the number of correspondences. 

LEMMA 5.3. Let hx(x, y)9 h2(x, y) be equivalent admissible polynomials. The 
number of polynomials g(x, y) that take on arbitrary values for a E Ai9 b E Bt 

(1 < / < k)9 but are uniquely determined elsewhere and, moreover, satisfy 
h\(x,y) = g(x, y)h2(x, y), is equal to 

k 
(5.4) q',e = 2 mtni9 

/ - l 

where mi9 nt are defined by (5.2). 

THEOREM 5.4. The number of admissible polynomials for the correspondence 
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defined by (5.1) and (5.2) is equal to 

(5.5) (q - 1)* e' - ?2 - 2 "W-

The polynomial ƒ (x, y) such that 

0 (a E Ai9 b G £,., 1 < / < k)9 

147 

ƒ (a, *) -
1 (otherwise) 

has been defined as the characteristic polynomial of the correspondence 
defined by (5.1). It is uniquely determined by the correspondence. 

THEOREM 5.5. Let f(x9 y) denote the characteristic polynomial of the corre­
spondence T. A polynomial h(x, y) is admissible for T if and only if 

(5.6) (h(x9y)y-l-f(x9y). 
THEOREM 5.6. Let hx{x9 y)9 h2(x9 y) be admissible polynomials for some 

correspondence T. Then 

(5.7) h(x9y) = hl(x9y)h2(x9y) 

is also admissible for T. It follows that the set of polynomials in a fixed 
equivalence class constitute a commutative group with respect to multiplication 
as defined by (5.7); the characteristic polynomial is the identity element of the 
group. 

The next theorem may be compared with Theorem 4.7. 

rank 

0 

i 

? 

Admissible polynomials, q = 

partitions 

Ao ~ Bo = F2 

AX=BX=F2 

Ao=Bo = {0}, AX = BX = {1} 
A0=BX = {0}, Ai=B0= {1} 
.40=1?! = {1}, Ax =2?0 = {0} 
A0=B0 = {1}, AX=BX = {0} 
A0 = {0}, Ax = {1}, Bi = F2 

A0 = {1}, Ax = {0}, BX=F2 

AX=F2, Bo = {0}, Bx = {1} 
AX=F2, B0 = {1}, Bx = {0] 

Ax =BX = {0), A2=B2 = {\) 
AX=B2 = {!}, A2=BX = {0} 

2 

polynomials 

1 

0 
xy + 1 
xy + x + 1 
xy + y + 1 
xy + x + y 

x + 1 
X 

y + 1 

y 

x + y 
x+y + 1 
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THEOREM 5.7. Given the correspondence T defined by the partitions A0, 
Ax, . . . , Ak; B0, Bv . . . , Bk9 let kx — k, k + 1 or k + 2 according as none, 
one or both of the sets A0, B0 are nonvacuous. Then two admissible polynomials 
ƒ(*) - 8(y)>f\(x) ~ gx(y) are equivalent if and only if fx = <t>(f(x))9 gx(y) = 
<t>(g(y)), where </>(*) denotes any function that carries an ordered set of kx 

numbers into another such set. 

6. Rank. The rank of a correspondence can evidently take on any value 
between 0 and q, inclusive. For rank k = 0, there is the unique correspon­
dence defined by 

(6.1) A0 - B0 - Fq. 

THEOREM 6.1. The characteristic polynomial for the unique correspondence of 
rank 0 is 

(6.2) f(x9y) - 1. 

The admissible polynomials for this correspondence are the polynomials h(x,y) 
that never vanish. The number of such polynomials is 

(6.3) (q - If-
For rank k = 1, there are several possibilities. First, for the correspondence 

defined by 

(6.4) Ax = Bx = Fq, 

we have the following result. 

THEOREM 6.2. The characteristic polynomial for the correspondence defined by 
(6.4) is 

(6.5) f(x,y) = 0. 

This is also the only admissible polynomial. 

The general situation for rank 1 is given by 

(6.6) A09AX; B0,BX, 

where 

(6.7) mt - \At\> nt * \Bt\> m\ > 0, /i, > 0, 
m0 + mx = n0 + nx = q. 

The number of correspondences defined by (6.6) and (6.7) is 

<6-8> 2 U)(m2) = (2*-1)2-
Consider first the correspondence defined by 

(6.9) ^ 0 = 2 ? 0 = { 0 } , Ax = Bx = Fq\{0}. 

The characteristic polynomial for this correspondence is 

(6.10) f(x,y)- l - J t ' - y - 1 . 

The admissible polynomials are 



FUNCTIONS AND CORRESPONDENCES 149 

c0(l - *«- ')(l - y"~l) + (1 - x*-1) S ca{\ -(y- a)"-') 
(6.11) a # 0 

+ ( l - > ' 9 - 1 ) 2 < ( l - ( x - a r - 1 ) , 

where a runs through the nonzero numbers of Fq and c0, ca, c'a are arbitrary 
nonzero numbers of Fq. Hence the number of such polynomials is 

(6.12) (q - I)*2 

in agreement with (5.5). 
Another special rank 1 case that can be handled readily is 

(6.13) A0 « B0 - Fq \ {0}, Ax « 5, - {0}. 

The characteristic polynomial is 

(6.14) f(x,y) - *«"* + .y*"1 - x ^ ! ^ " 1 . 

The admissible polynomials are given by 

(6.15) h(x,y)- 2 ' ^ { l - ^ - ^ - ^ t l - ^ - * ) ^ 1 } , 

where the summation is over all (a, b) except (0, 0) and the cab are arbitrary 
nonzero numbers of F . It follows that the number of admissible polynomials 
is 

(6.16) ( 9 - I)*2-* 

in agreement with (5.5). 
Note that for q odd, 

(xq~x + yi-l)q~l= xq~x + yq~x - xq~xyq-\ 

so that xq~x + yq~l is admissible for (6.13). 
By Theorem 4.5, an admissible polynomial of the form f(x) + g(y) does 

not exist for (6.13) with q = 2. Let q = 2', t > 1, and let X denote any number 
of Fq except 0 or 1. Then it can be verified that 

(xq'1 + \yq~l)q~l= xq~l + yq~x - xq-lyq~l, 

so that xq~x + Xyq~x is admissible for (6.13). 
For the correspondence defined by (6.9) it can be verified that 

(6.17) h(x9y) = 2 - xq~x - yq-x (q odd) 

is admissible. This follows from 

(2- xq~x -yq-x)q *- 2 2q-r~x{xq~x +yq~x)r 

= 1 + 2 2q-r~x{xq-x +yq~x + (2r -2)xq-xyq-x) 
r*m 1 

= 1 - xq-xyq~x. 

For q = 2\t > 1, let a, /? be numbers of F^ such that a + £ = 1, a(ï ^ 0. 
We find that 
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(1 + cue*"1 + jÖy*"1)* _ 1 = 1 + xq-xyq~\ 

and therefore the polynomial 1 + axq~x + fïyq~l is admissible for (6.9). 
For rank 2 consider first the correspondence defined by 

(6.18) Ax-Bx- {0}, A2- B2=Fq\ {0}. 

The characteristic polynomial is 

(6.19) f(x,y) - -x*-1 + J^"1 " 2xq-lyq~l. 

An admissible polynomial (compare Example (vi) of §3) is 

(6.20) h(x,y) = xq-l-yq-1. 

Another admissible polynomial is 

(6.21) h(x,y) - (1 - xq~l)y + x(l - yq~x). 

Another special case of rank 2 of some interest is 
(6.22) A0 - B0 - {0}, ^ - 2»! - {a}, ^ 2 - *2 - {6} (<? odd), 

where a runs through the squares (=^0) and b the nonsquares of Fq. We find 
that the characteristic polynomial for (6.22) is 

(6.23) f(x,y) - 1 - £(x'>m + x^-V^"1) (? - 2m + 1). 

Since 

(1 - J C ^ " 1 ) * - 1 - 1 + m(xmvw 4- JC^-V^" 1 ) , 

it follows that 

(6.24) h(x,y) = 1 - xym (q = 2m + 1) 

is admissible for (6.22). 
For rank k — q, it is clear that ^40 and Z?0 are both vacuous and the 

correspondence is defined by 

(6.25) Al9...,Aq; Bv . . . , Bq, 

where each of the sets contains a single element. By Theorem 4.2 there exists 
an admissible polynomial for this correspondence of the form 

(6.26) h(x9y)-f(x)-g(y). 

In particular, for the identity correspondence, that is 

(6.27) At - B, (1< i < q), 

the polynomial x — y is evidently admissible, so that 

(6.28) f(x9y)-(x-y)*-1 

is the characteristic polynomial. The general admissible polynomial is given 
by 

(6.29) h(x,y) = 2 ca>6{l " (* - «)*_I}{1 ~(y- * ) ' " '} . 

where the summation is over all a, b E Fq, a ¥= b9 and the cab are arbitrary 
numbers of Fq. The number of such polynomials is (q — l)q2-* in agreement 
with (5.5). 
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7. Some enumerations. We shall use the following notation. Consider the 
partitions 

(7.1) A0,Av...9Ak; B0,Bv...,Bk 

and put 

(7.2) m, - | 4 | , / i , - | * , | (0< / < k)9 

where 

(7.3) m0 > 0, n0> 0, m, > 0, nt > 0 (1 < i < k) 

and 
(7.4) q = m0 + ml + • • • + m* = w0 + «j + • • • + ^ . 

The set of integers 
(7.5) (m0, mv . . . , mk\ n0, nv . . . , /!*) 

will be said to characterize a correspondence type of rank /c. 
In order to enumerate correspondences and correspondence types, it is 

convenient to consider a somewhat more general problem. Let A, B be finite 
sets, \A\ = m, \B\ = n. Consider the partitions: 

(7.6) A = A0 U Ax U • • • U Ak, B ** B0\J Bx U - - - \J Bk, 

where 

(7.7) / W / = N > "/- |* / | (0< i < *) , 

(7.8) 

m0 > 0, «0 > 0, m, > 0, /i, > 0 (1 < i < k). 

Changing the notation, we put 

m = m0 + S/̂ y (m0 > 0), 

« = nQ + 2>(,- («o > 0), 
fc = 2 ^ ; 

etj is the number of pairs (As, Bt) such that \AS\ = i, |2?,| = j . 
Let iV(m, w, /c) denote the number of sets Ai9 Bj satisfying (7.6) and (7.8); 

let T(m, n, k) denote the number of solutions of the system (7.8). Then 

(7.9) r ( r o , / i , * ) « 2 l 

and 

(7.10) JV(w,/!,*)« 2 m\n\ 

m0!n0!nv-n(nrw) 
in each case the summation is over all solutions of (7.8). 

Put 

2^ IS ^ra, n, K) 

It then follows from (7.10) that 

(7.11) F(x9y,z)- 2 N{m,n9k)-J-?zk. 

F(x,7,z) = ex+y 2, 
rfr^nv(ni!iu!r 
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Now 
oo oo x^ieffy^jeUzeu xy 

Ji^on^i/nu!)^ -^[Z£XW\ 

- exp(z(e* - 1)(*> - 1)), 

so that 
(7.12) F(x,.y, z) - <?*+' exp(z(e* - l)(e' - 1)). 

Since the Stirling number of the second kind 

S(n,k)-± 2(-l)""*(^V" 

satisfies 

( ^ ~ 1)*-*! 2 «'(/i,*) 
n**k nl 

it follows from (7.12) that 

(7.13) F(x,.y, z) - e*+ ' f fc!z* f S (m, k)S(n9 k) ^ 
k — O w, w - 0 

Comparison of (7.13) with (7.11) gives 

mini 

(7.14) N(m9n9k)^k\^ 2 ("!)(nj)s(i,k)S(j9k). 
/ - o ; - o v / w / 

Since 

2 ( " U c U ) = S(" + 1,* + 1), 
7 -0 W / 

(7.14) reduces to 

(7.15) N(m9 n9 k) - *!S(wt + 1, A: 4- 1)S(» + 1, k + 1). 

As for 7\m, «, fc), it follows from (7.8) that 

(7.16) 
m n 

T{m9n9k) = 2 2 T\r9s9k)9 
r « 0 5 - 0 

where T'(r, s9 k) denotes the number of solutions of 

(7.17) r - 2 'fy * - S >(/> * - 2 fy 
Put 

(7.18) 
G(x, / , z ) - 2 r(m,/i,fc)jc,Vz*, 

Then by (7.16), 

(7.19) G{x,y, z) = (1 - x)- ' ( l - ^ - ^ ' ( x , ƒ, z). 
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We find that 
00 

(7.20) G'(x,y,z)- II (1 - xyz)~\ 

and therefore, 
00 

(7.2i) G(x,y,z) = (i- xy\i-yy
l II {\ - xyz)~\ 

The generating function (7.20) suggests the following combinatorial inter­
pretation of T\m, n9 k). The enumerant T'(m, n, k) is equal to the number of 
pairs of ^-tuples of positive integers (/,, js) satisfying 
(7.22) ix + i2 + • • • + ik = m, jx + j2 + • • • +jk = n. 

Another way of putting it is that T'(m9 n, k) is the number of partitions of the 
bipartite (m, n) into positive parts. Hence, by (7.16), T(m, n, k) is the number 
of pairs of positive integers is, js such that 

(7.23) ix + i2 + • • • + ik < m, jx +72 + • • • + . ƒ * < " • 
Next put 

(7.24) T(m9n) « 2 r(m,/!, *). 
k 

Then (7.21) gives 

(7.25) § T{m,ri)xmyn^ II (1 - x^)'1. 
m, « -0 i+j>0 

Thus T(m, ri) is the number of pairs (is,js), is + js > 0, such that 
(7.26) m = ix + i2 + i3 + . . . , « = jx + y2 4- 73 + . . . , 

that is, the number of unrestricted partitions of the bipartite (m, ri). 
For references to multipartite partitions see [4], [11], [12], [15], [17], [18]. 
For the applications to the enumeration of correspondences and correspon­

dence types we take m = n = q. 

THEOREM 7.1. The number of correspondences in Fq of rank k is equal to 
k\(S(q + 1, k + l))2, where S(q + 1, k + 1) denotes a Stirling number of the 
second kind. The total number of correspondences is S^-o^KS^ + 1, & + l))2. 

THEOREM 7.2. The number of correspondence types in Fq of rank k is equal to 
T(q, q, k% where 

f T(m, n9 k)x>ynzk= (1 - x)- !( l - y)~l 5 (1 - xVz)~\ 
m,n,k**0 ij**\ 

The total number of correspondence types is equal to T(q, q\ where 

f T{m,n)x>yn={\~ x)-\\-yy
x II {\-xy)'\ 

To get a generating function for the number of admissible polynomials we 
put 
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m\n\\*ijeiJ 
(7.27) N (m, n9 k; X) = 2 " , , , /TT -,TT •. \«* > 

where the summation is over all solutions of (7.8). Also put 

(7.28) F(x9y9z;\)- f N(m9 n9 k;X) ^ zk. 
m,n,k~o mlnl 

We find that 

(7.29) F(x,y,z;\) = ex+yexp\z f ^ £ * M . 

Put 

f °° JCV7 1* °° xmvn 

(7-30) 2 7^-XM =klkl 2 S(i», » , * ; * ) - £ , 

so that S (m, n, k; 1) = S (m, k)S(n, k). Also 

(7.31) N{m9 n9 k; X) = k\ § £ ( 7 )C î )^K "> *; *)• 

Applying Theorem 5.4, we get 

THEOREM 7.3. 7%e number of admissible polynomials of rank k is equal to 

(7.32) *!(«" 1)^ 2 (J) (5)S(U,*;(«- O"'). 

wAere S (/,.ƒ, A:; X) w defined by (7.30). 

The S (/,./, A:; X) are not easily computed. However it can be verified that 

S(m9 n, 0; X) = 0 (m + n > 0), 5 (0 , 0, 0; X) = 1, 

S(m9 n9 1; X) = Xmn (m > 0, n > 0), 

S(m9n92;X) - f S ( 7 ) ( " ) X * + ( m " 0 ( w - y ) (m > 1, n > 1). 

Thus, for example, the number of admissible polynomials of rank 1 is equal 
to S/^-X^ — l)q ~ij in agreement with earlier results. 

8. Composition (this topic is not discussed in [2], [3]). Let the correspondence 
T be defined by the partitions 
(8.1) A09Av...9Ak; B09 Bl9 . . . 9 Bk9 

where the Ai9 Bi satisfy the usual conditions. Let {iv . . . , ir}9 {j{9 . . . 9js) 
denote two subsets of 1, 2, . . . , k9 such that {iv . . . , / , } U {j\, . . . Js] 2 
{1, 2, . . . , k) and put {iv . . . , ir} n {jv . . . Js) = {Ap . . . , ht). Thus 
(8.2) r + s = A: + t. 

Now define the correspondences Tl9 T2, T0 by means of 

(8.3) Tl:A'(pAli9...9Alt; B^9 Bii9 . . . , Bif9 

(8.4) T2:AZ9AJi9...9Aj5; B£9 BJl9 . . . , BJs, 
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(8.5) T0: A"o,Ahi, . . . , Aht\ 5%, Bh<i . . . , B^, 

where 

A'0=Fq\(AhV- u ^ ^ - F ^ ^ U - - - UBir), 

Ao - Ff \ ( 4 , U • • • U 4 ) , * 0 * = Ff \(A7, U • • • U BJs), 

A'"0 = Fq\(AhiU--- UAK), B'"0=Fq\(BhiU--- U ^ 

Clearly the correspondences Tl9 T2, T0 are of rank r9 s9 /, respectively. 
We shall write 

(8.6) r - i ^ u r * r0 = r,nr2. 
Denote the characteristic polynomials of T9 Tl9 T29 T0 by f(x9 y)9 fx(x9 y\ 

fi(x> y)> Mx> y)y respectively. The following theorem is a consequence of 
Theorem 2.2: 

THEOREM 8.1. The characteristic polynomials of the correspondences Y9YX9 T29 

T0 satisfy 

(8.7) f(x9y) + f0(x9y) « fx(x9y) + /2 (*,>>). 

In particular, for f = 0, T0 is the zero correspondence defined by A0 = B0 

= F^. The characteristic polynomial in this case is 1, so that (8.7) reduces to 

(8.8) f(x, y) + l-fx (x, y) + f2 (x, y). 

For example (see the table in §5) if we take 

r : Ax-Bx- {0}, A2 = B2 « {1}, ƒ(*,>>) = x + >>, 

r ^ ^ o - i ? o - {1}, A = ^i = {0},/1(x,.y)-xv + x+<v, 
T2: ^ 0 - B0 - {0}, ^ = *! = {1},/2(x,>>) - xy + 1, 

it is clear that (8.8) is satisfied. 
Returning to (8.1) define the set of correspondences Tl9 . . . , Tk by means 

of 
Tt:A0= Fq\Ai9Af; B0 = Tq\Bi9Bi (Î « 1, 2, . . . , *). 

Each I\ is evidently of rank 1. 
Let fj(x9 y) denote the characteristic polynomial of Tr Then (8.8) gives 

(8.9) f(x,y) + k- 1 = ^ifi(x9y). 
i - i 

From the above it is clear that with each correspondence V of rank k is 
associated a set of 2k correspondences that form a Boolean algebra with 
respect to the operations u , n ; T is the unit element of the algebra and the 
zero correspondence is the zero element of the algebra. The characteristic 
polynomials of the correspondences are related by (8.7). 

It should, of course, be kept in mind that we have not defined rj u T2, 
Tx n T2 for an arbitrary pair of correspondences. 

9. More general correspondences. In the remainder of the paper we shall 
briefly discuss the more general varieties of correspondence defined in the 
Introduction. Except for the enumerations in §14, we shall limit the discus­
sion to correspondences of type (1, 1, 1) and (m9 n). 
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To begin with, it is convenient to state several preliminary lemmas. Let Fq 

denote the direct product of r copies of Fq and let 

(9.1) a = (al9a2, . . . , ar) 

denote an arbitrary point of Fq. 

LEMMA 9.1 [9, p. 124]. Given the numbers c(a) = c(av a2, . . . , ar) G Fq 

there exists a polynomial f(x) = f(xv x29 . . . , xr) G F [xx, x2, . . . , xr] such 
that 

(9.2) / ( a ) - c ( a ) (aEF,'), 

namely, 

(9.3) fix) = 2 c(a) fi(l- (*, - <T'). 
a e f ; / - I 

LEMMA 9.2. Le* b1? b2, . . . , b, 6e distinct points of Fq. There exists a 
polynomial f (x) G F [x] such that 

0 (a = b„ 1 < / < t)9 

[I (otherwise). 

LEMMA 9.3. Let t > 1 and let 

(9.5) j}(x) (/ - 1, 2 0 

be arbitrary polynomials in Fq[x]. Let A = {a} denote the set of zeros in Fr
q of 

the system 

(9.6) / / ( x ) - 0 ( i - 1 , 2 , . . . , / ) . 

Tftere exists a polynomial f (x) G F [x] swcA that 

0 (c G ^ ) , 
( 9 . 7 ) ^ [ 1 (otherwise). 

Now let £ > 0 and let 

(9.8) A0, Ai, . . . , 4̂̂ .; i>0, 2>j, . . . , Bk\ C0, Cj, . . . , Ck 

denote partitions of Fq such that 

(9.9) Av...,Ak9 Bl9...,Bk9 CX9 . . . , Q 

are nonvacuous while A09 B09 C0 are arbitrary. Then (9.8) defines a (1, 1, 1) 
correspondence T. 

THEOREM 9.4. 7%ere exists a polynomial f (x9 y, z) G i^[x, y9 z] such that 

0 (a G Ai9 b G £„ c G C„ 1 < i < A:), 
(9.10) f(a9b9c) = 

[ 1 (otherwise). 

The polynomial ƒ (A;, >>, z) is the characteristic polynomial of the correspon­
dence r defined by (8.8). The definition of an admissible polynomial need not 
be repeated. 

The following properties of admissible polynomials are immediate. 
1. If h(x9y9 z) is admissible for the correspondence T9 then 
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f(x9y9z) = (h{x9y9z))q~ 

is the characteristic polynomial for T. 
2. If h(x, y9 z) is admissible for T and g(x9 y, z) never vanishes, then 

g(x9y9z)h(x9y9z) 

is also admissible for T. 
3. If h(x, y9 z) is admissible for T and <t>x(x)9 <t>2(y), <h(z) are permutation 

polynomials such that each At is carried into itself by $x(x\ each Bt is carried 
into itself by <j>2(y) and each C, is carried into itself by <£3(z), then 

hx(x,y9z) = *(*i(x),$2O0,$3(z)) 
is also admissible for T. 

4. If /z(x, y9 z) is admissible for Y and <f>(*) is a polynomial that vanishes 
only for x = 0, then ^(x, y9 z) = <t>(h(x9 y9 z)) is also admissible for T. In 
particular, the polynomials 

ht{x9y, z) = (h(x9 y9 z))' (* = 1, 2, 3, . . . ) 

are all admissible. 
A useful form for the chracteristic polynomial of a correspondence is given 

by the following theorem. 

THEOREM 9.5. With the notation (9.8),/n/f 

*,(*) - n (x - a)9 uy) - n (y - b), 
aEiAi bE:Bi 

(9.11) 
o>i(z) - II (z- c) (i - 0, 1, . . . , *), 

k k k 

(9-i2> n *,(*) - x« - x, n * , o o = y q - y , n «,<*) = z«~z. 
i -O i -O i -O 

// \ i -j- v xq - x yq - y zq - z 

x#(*M(o«;(z). 
Conversely if<j>t(x), ^(y), cot(z)9 i — 0, 1, . . . , k, are any polynomials satisfying 
(9.12) and deg ^(x) > 0, deg <k(>>) > 0, deg w,(z) > 0 (1 < i < k)9 then the 
partitions defined by (9.12) and (9.8) g/ue a correspondence with the characteris­
tic polynomial (9.13). 

In the next place, consider the partitions 

(9.14) F ; ^ O U ^ U - ' U 4 ^ ^ O U ^ U - ' U Bk9 

where m > 1, n > 1, Al9 . . . , ̂  Bl9 . . . 9 Bk are nonvacuous while ,40, 5 0 

are arbitrary. 

THEOREM 9.6. Tftere exists a polynomial f (x9 y) G FJx, y], where x E F™, 
y G F£9 such that 
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O (a G Ai9 b E Bi9 1 < i < &), 
(9.15) fC*)-{l {otherwise)_ 

The polynomial /(x, y) is the characteristic polynomial of the (m, n) 
correspondence defined by (9.14). The definition of admissible polynomial 
need not be restated. 

For arbitrary A C Fq define 

g(a A)= il < a G ^ ) ' 
10 otherwise. 

THEOREM 9.7. With the notation (9AA\put 

gi(x,y) = g(x9Ai)g(y,Bi) (1 < ƒ < k). 

Then 

(9.16) / ( x , y ) - l - 2 S/(*y) 

is the characteristic polynomial of the correspondence defined by (9.14). 

Composition of correspondences as defined in §8 is easily carried over to 
more general correspondences. However we shall not take the space to 
discuss this topic. 

10. Some examples. A. (1, 1, 1) admissible and characteristic polynomials. 
(i) f(x, yy z) = 1 - xq~~xyq~xzq~x is characteristic for correspondence of 

rank 1 defined by AQ = B0 - C0 - {0}, Ax « JB} - Q - Fq\ {0}. 
(ii) h(x,y, z) = 1 - xyz (# > 2) is not admissible for any correspondence. 
(iii) The polynomials h(x,y9 z) = x + y + z, xy — z, x^_1 + .y*"1 - z*"1 

are not admissible for any correspondence. 
(iv) f(x9y, z) = 0 is characteristic for the correspondence of rank 1 defined 

byAx = Bx = Cx = Fq. 
(v)f(x,y, z) = 1 is characteristic for the correspondence of rank 0 defined 

by A0= B0= C 0= Fq. 
(vi) The polynomial 

f(x9y9 z) - (x - y)q~x + (y - z)q~x- (x - y)'-\y - z)q~x 

= (y - z)q~x + (z - x)q~x- (y - zf-\z - x)q~x 

- (z - x)*_1+ (x - y)q"x- (z - x f _ 1 (x -.y)*"1 

is characteristic for the identity correspondence defined by At = Bt = C, = 
{^} (1 < i < q)9 where Fq = als tf2> . . . , aq. 

(vii) ƒ(*, y9 z) = (1 - xy)*"1 + (1 - yz)q~x - (1 - x y ) ' " ^ - y ^ " 1 is 
characteristic for the correspondence of rank q - 1 defined by A0 = 2?0 = C0 
= {0}, ^ - {*,}, 5,. - {a^-1}, Ç - {a,.} (1< i < « - 1), where Fq - {0, 

(viii) ƒ(*,;;, z) = 1 - (1 - x ^ X l - . y ^ X l - zq'x) is characteristic for 
the correspondence of rank 1 defined by A0=* B0= C0~ Fq\ {0}, Ax = Bx 

- C, - {0}. 
B. (2, 1) admissible and characteristic polynomials. 
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(ix) h(xv x2, y) = xf -1xf _ 1 - yq~l is admissible for the correspondence 
of rank 2 defined by 

Ax - {(av a2)\axa2 * 0}, A2 - {(av a2)9 axa2 « 0}, 

^ - ^ { O } , B2={0). 

(x) /(x, , x2, y) = 1 - xf_ 1x|~V*_ 1 is characteristic for the correspon­
dence of rank 1 defined by 

A0 = {(«„ fl2)|a|fl2 = 0}, ,4, = {(a,, a2)|a,a2 ^ 0}, 

2?0={0}, 5 , = F 9 \ {0} . 

(xi) h(xl9 x29y) = x, + x2#y is not admissible for any (2,1) correspondence. 
(xii) h(x{9 x29 y) = x, + x2 — y is admissible for the correspondence of 

rank q defined by At = {(al9 a2)\a{ + a2 = 6,}, £, = {£,} (1 < / < q), where 
^ = (*i> *2> • • • > bq). 

(xiii) A(*i, x2, >>) = xxx2y is not admissible for any (2, 1) correspondence. 
(xiv) f(xX9 x29 y) « 1 - (1 - xf_1)(l - xf-^O -J^*"1) is characteristic 

for the correspondence of rank 1 defined by 
^ 0 - F / \ { ( 0 , 0 ) } , A = {(0,0)}, 

B0=Fq\{0), B, = {0). 

(xv) h(xv x29 y) = xf -1 + x | _ 1 - y q~l is admissible for the correspon­
dence of rank 2 defined by 

Ax = {(0,0)}, , 4 2 = F 2 \ { ( 0 , 0 ) } , 

^ - { 0 } , B2 = Fq\{0}. 

(xvi) h(xl9 x2, ƒ) = 0 is characteristic for the correspondence of rank 1 
defined by Ax = F2

9 Bx = F^. 
(xvii) A(x1? x2, 7) = 1 is characteristic for the correspondence of rank 0 

defined by A0 « F^2, £0 = F^. 
C. (2, 2) characteristic polynomials. 

ƒ(*!, x29yX9y2) 
(xviiO 

-1 - (xf-1 + *rl - *rl*rl)(yrl + yrl - yr'yr1) 
is characteristic for the rank 1 correspondence A0 = B0 — {(0, 0)}, Ax = Bx 

= F,2\{(0,0)}. 

(xix) f(xX9 x29yX9y2) - 1 - (I - xf~ !)(1 " ^ " ' X 1 ~ ^ " " 'X 1 - >tf~!) 

is characteristic for the rank 1 correspondence A0 = B0 = F̂ 2 \ {(0, 0)}, 
^ i - * i - { ( 0 , 0 ) } . 

/(*i,*2>JW2) « (xx - yx)
q~x + (x2- y2)

q~l- (xx - yx)
q_1(x2 - y2)

q'2 

is characteristic for the identity correspondence (rank q2). 

11. Normal forms. A. (1, 1, 1) correspondences. Let the partitions 
vll.-U AQ9 A x , . . . , A k \ BQ9 BX9 . . . , B k \ CQ, C J , . . . , Ck9 

subject to the usual conditions define the (1,1,1) correspondence I\ We define 
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kv the augmented rank of T, as equal to k9 k + 1, k + 2 according as ^ 0 , i?0, 
C0 are all vacuous, at most two are nonvacuous, or all are nonvacuous. 

In order to obtain results like those of §4, we extend the notion of an 
admissible polynomial. Let hx(x,y, z), h2(x,y, z) be polynomials in Fq[x9y, z] 
such that the set of zeros of the system 

hx(x,y, z) = 0, h2(x,y, z) = 0 

is given by U?«i04, X Bt X Q .We shall say that hx, h2 are an admissible 
pair for T. 

THEOREM 11.1. Given arbitrary polynomials <f>(x)9 \^(y)9 <o(z), with coefficients 
in Fq, the polynomials <f>(x) — \p(y), *p(y) — <o(z) constitute an admissible pair 
for some (1, 1, 1) correspondence. The augmented rank of this correspondence 
satisfies the inequality kx < q. 

THEOREM 11.2. A (1, 1, 1) correspondence possesses an admissible pair of the 
form <j>(x) — \p(y), $(y) — u(z) except when its rank is q — I and its aug­
mented rank is q + 1. 

THEOREM 11.3. In the exceptional case of Theorem 11.2, that is, k = q — 1, 
kx = q + 1, the characteristic polynomial is given by f(a{x\ /?(>>)> ï(z))> where 

f(x,y,z) - (1 - x*-l)(l ~yq-l)(l - z*~x) + (x - y)q~x 

+ ( x - z)q-x-(x-y)q~\x- z)q'x 

and a(x), /$(y), y(z) are permutation polynomials. 

B. (m, ri) correspondences. Let the partitions 

(11.2) A0,Ax,...9Ak; B0,Bv...,Bk9 

subject to the usual conditions, define the (m, n) correspondence T. We 
define kv the augmented rank of T, as equal to k, k + 1, k + 2 according as 
^40, 2?0 are both vacuous, one is nonvacuous, or both are nonvacuous. 

THEOREM 11.4. Given arbitrary polynomials </>(x) E F [x], ^(y) E F [y], f/ie 
polynomial h(\, y) = <£(x) — t//(y) w admissible for some (m, n) correspondence. 
The augmented rank of this correspondence satisfies the inequality kx < q. 

THEOREM 11.5. An (m, n) correspondence possesses an admissible polynomial 
of the form <J>(x) — i//(y) if and only if kx < q. 

Note that for (m, ri) correspondences, k < min(#w, qn). Thus only if m = 1 
or n = 1 will an admissible polynomial of the form </>(x) - *//(y) be "usual". 

12. Admissible polynomials. A. (1, 1, 1) correspondences. Two admissible 
polynomials are equivalent if they are admissible for the same correspon­
dence. Thus the totality of admissible polynomials breaks up into a number 
of equivalence classes. Clearly the number of equivalence classes is equal to 
the number of correspondences. Also two admissible polynomials hx(x, y, z), 
h2(x, y, z) are equivalent if and only if (hx(x, y, z))q~x = (h2(x, y, z))q~l. 
Moreover, if hx(x, y, z) and h2(x, y9 z) are equivalent, then 

(12.1) h(x,y, z) = hx(x,y, z)h2(x,y, z) 
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is in the same equivalence class. Thus the polynomials in an equivalence class 
constitute a commutative group with respect to multiplication as defined by 
(12.1); the characteristic polynomial is the identity element of the group. 

Let the partitions 

(12.2) A09Ai9 . . . 9 Ak; B09 Bl9 . . . 9 Bk; C0, Cv . . . , Ck 

define the (1, 1, 1) correspondence T. Also let 

(12.3) A09AX9...9Ak; B09 Bv . . . , Bk 

and 
(12.4) B0, Bv . . . , Bk; C0, Cl9 . . . , Ck 

define the (1, 1) correspondences Tx and T2, respectively. The following 
theorem relates the characteristic polynomials of I\ Tv T2. 

THEOREM 12.1. Let f(x9 y, z), fx(x9 y)9 f2(y9 z) denote the characteristic 
polynomials ofT, TX9 T29 respectively. Then 

(12.5) f(x,y9 z) - fx (x,y) + f2(y, z) - ƒ, (x9y)f2(y9 z). 

THEOREM 12.2. With the notation of Theorem 12.1, let h(x,y, z) denote any 
admissible polynomial for T. Then there exist hx(x9 y)9 h2(y9 z), admissible 
polynomials for Tl9 T29 respectively, such that 

h(x9y9z) = hx{x9y) + h2(y9z) - hx(x9y)h2{y9z). 

THEOREM 12.3. The number of admissible polynomials for the correspondence 
defined by (12.2) is equal to 

{q-\)e, e = q3-2\Ai\-\Bi\-\Ci\. 
1 - 1 

Two admissible pairs of polynomials are equivalent if they are admissible 
for the same correspondence. 

THEOREM 12.4. Given the (1, 1, 1) correspondence of augmented rank kx < q9 

two admissible pairs 

<K*) - Wy)> i>{y) - u(z)-9 <t>x(x) - \px(y), t ^ i O O - u , ( z ) 
are equivalent if and only if 

*, (x) = ƒ(*(*)), ^ (y) = ƒ(>Hy)), «, (z) = ƒ(W(z)), 

where ƒ is any function that is one-to-one when it is restricted to each of the 
images of <ƒ>, \p, co. 

We remark that there are 32 admissible polynomials for q = 2. 
B. (m, n) correspondences. We give only the following two results. 

THEOREM 12.5. The number of admissible polynomials for the (m9 ri) corre­
spondences defined by 

Fq
m - A0 U Ax U • • • U Ak9 F ; = B0 U Bx U • • • U Bk 

is equal to 

(q-iy, e -9 - + - -2K | - | « / | . 
i = l 
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THEOREM 12.6. Given the (m, n) correspondence of augmented rank kx < q, 
two admissible polynomials <j>(x) — ̂ (y), <t>x(y) — ̂ \{y) we equivalent if and 
only if <t>i(x) = /(<f>(x)), v/^y) = /(*Ky)), where ƒ denotes any function that is 
one-to-one when it is restricted to each of the images of § and \p. 

We remark that there are 96 admissible (2, 1) polynomials for q = 2. For 
the tabulation, inclusing the corresponding partitions, see [3, §5]. 

13. Rank. A. (1, 1, 1) correspondences. The unique (1, 1, 1) correspondence 
of rank 0 is defined by A0 = B0 = C0 = Fq. It has the characteristic poly­
nomial f(x, y, z) = 1. The admissible polynomials are the h(x, y, z) that 
never vanish; the number of such polynomials is (q - l)q . 

The characteristic polynomial of the rank 1 correspondence defined by 
Ax = Bx = Cx = Fq is f(x> y, z) = 0; this is also the only admissible poly­
nomial. The correspondence defined by 

(13.1) A0 = B0 = C0 = {0}, Ax = Bx = Cx = Fq\{Q) 

is of rank 1 and has characteristic polynomial ƒ (x,y, z) = 1 - xq~xyq~xzq~x. 
The number of admissible polynomials 3q2 — 3q + 1. 

Another special case of rank 1 in a sense dual to (13.1) is 

(13.2) A0-B0-C0-Fq\ {0}, Ax - Bx - Cx = {0}. 

It has characteristic polynomial 

f(x,y,z) = 1 - (1 - xq~x)(\ -y«-l)(\ - zq~x). 

There are (q — l)q3~~x admissible polynomials. In particular, h(x,y9 z) = xq~x 

+ y9~l + zq~l is admissible provided (q, 3) = 1. For q = 3\t > 1, it can be 
shown that 

h(x9y, z) = xq~x + Xyq~x + \2zq~\ 

where X E Fq\ F3, is admissible. 
Similarly, for (13.1), h(x, y, z) = 3 - xq~l - yq~x - zq~x is admissible 

provided (q, 3) = 1. For q = 3', t > 1, 

h(x9y,z) « 1 - axq~x - <xyq~l - (1 + a)zq~\ 

where a G F^ \ F3, is admissible. 
As an example of a rank 2 correspondence, we take 

(13.3) Ax - ^ = Cx « {0}, i 4 2 - i 2 « C 2 = / ^ \ { 0 } . 

The characteristic polynomial is 

f(x,y,z) = .x*-1 + j ^ 1 + z*"1 - j ; * - ^ * - 1 - z* -1.**-1 - xq~xyq~x. 

For # > 2, the polynomial h(x,y, z) = ax*" 1 + pyq~x + yz*""1, where a + 
j8 + y = 0, afiy =£ 0, is admissible. 

The last few examples suggest that it would be of interest to determine 
those (1, 1, 1) correspondences that have admissible polynomials of the form 

(13.4) $(x) + *(y) + o>(z). 

B. (m, ri) correspondences. For rank 1 we have generally the partitions 

(13.5) A0,AX; B09BX, 
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where at = \At\9 # = \B{1 ax > 0, $x > 0, <x0 + ax = qm, p0 + /?j = ? ". Thus 
the number of correspondences is 

2 2 K ) K ) = (2«"-1)(2<"-1). 

In particular, for m = 2, n = 1, the correspondence defined by A0 = {(0, 
0)}, £ 0 = (0), Ax = F*\ {(0, 0)}, Bx = Fq\ {0} has the characteristic poly­
nomial 1 - (xf~l + x | , _ 1 - x f - 1 ^ ! - 1 ) / ^ - 1 . The correspondence defined by 
A0 = F% \ {(0, 0)}, B0 = Fq\ {0}, ̂  = {(0, 0)}, Bx = {0} has the character­
istic polynomial 1 - (1 - x^~x){\ - x f ^ X l - ƒ *~1). As for (13.2), the poly­
nomial x f - 1 4- x f - 1 + yq~l is admissible provided (q, 3) = 1. The case 
q = 3', / > 1, can be handled as for (13.2). 

For (2, 1) correspondences of rank q, consider 

(13.6) Al9...,Aq; Bv...9Bq9 

where At = {{ai9 bt - at)}9 Bt = {bt} (1 < / < #) and Fq = bl9 . . . 9 bq. An 
admissible polynomial is evidently xx + x2 "" 7 a n d therefore 

(*! + x2 - y)q~l 

is characteristic. 

14. Enumeration (compare §7 above). A. (mv . . . , mr) correspondences. 
The general correspondence of rank k is defined by 

(14.1) F? = Ai0 U i n U ' " U A* ( K i < r), 

together with 

atJ =\Ay\ (1 < i < r ; 0 < j < k)9 

ai0 > 0, ay > 0 (1 < j < *), 
(14.2) 

and 

k 
0 4 . 3 ) tfm' = 2 «(, (1 < i < r). 

The set of integers (a0) (1 < i < r; 0 < j < k) satisfying (14.2) and (14.3) 
is said to characterize a correspondence type. Let T(qm\ . . . , q^, k) denote 
the number of correspondence types of rank k. Also let T(qm\ . . . , q^) 
denote the total number of correspondence types. 

THEOREM 14.1. We have 
00 

2 s^(»i ^ * w - - - * y 
(14.4) , «r = 0 k 

,-\ - (1 - xxy
l • • • (1 - O ' 1 I I (1 - *f' • • . xlrz) 

' 1 , • • • , « r - l 

77zws T{qm\ . . . , #"*-, /c) w ê wtf/ to f/*e number of rectangular arrays of 
positive integers {atj) (1 < / < r; 1 < j < k) such that 

S ay< q« ( 1 < i < r). 
y : = i 
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THEOREM 14.2. We have 

f T{nx, ..., nr)*{" • • • x? 
(14.5) "' "~° 

°° - 1 
= ( l - x 1 ) - 1 - - - ( l - ^ ) " 1 II (\-xh---xjrY . 

i\, . . . , / r - l 

THEOREM 14.3. 7%£ number of (ml9 . . . , mr) correspondences of rank k is 
equal to 

(k\ y~xS(qm> + 1, * + 1) • • • S(q^ +l9k+ 1), 

where S(n + 1, k + 1) denotes a Stirling number of the second kind. 

THEOREM 14.4. The number of (mv . . . , mr)-admissible polynomials of rank 
k is equal to 

(*!)- '( ,- if+-+- 2 f (*"")• ••(f)s(',.....^ *;(«-!)-'). 

00 j ç r t l . . . j ç w r 

(M) '" 1 2 S(ni,...,nr,k;X) ', r, 

f » X{" • • • Xr* 1 * 
- S - î 1.X---V . 
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