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We consider Birkhoff interpolation for an incidence matrix E — {eik)^x\ kl 0 ' 
the "polynomials" P = 2n

0 akuk(x), for a system (J = {uk}^ of functions uk E 
Cn [a, b] (or P = {xk }Q) and the knots X = (xt, . . . , xm) satisfying a < xx 

< • • • < xm < &. The method of independent knots appears for the first time 
in [4] ; it is somewhat related to the coalescence method [1], [3]. 

A function ƒ G Cn [a, b] is annihilated by E, X if 

(1) fQc)(xl) = 0 for all (/, k) with eik = 1. 

From zeros of ƒ and its derivatives given by (1), one can derive further zeros by 
means of Rolle's theorem. This leads to the following definition. A Rolle set R 
for a function ƒ annihilated by E, X is a collection Rk, k = 0, . . . , n, of Rolle 
sets of zeros (with multiplicities) of the f^k\ The sets Rk are defined inductively: 
R0 consists of the zeros of ƒ given by (1); if R0, . . . , Rfc have been defined, we 
select Rk + i— some of the zeros of/** + 1*—as follows: (a) Rk+l contains all 
zeros of f^ of multiplicity > 1, their multiplicities reduced by 1. (j3) Rk + 1 

contains all zeros of / ^ + 1) (with multiplicities) given by (1). (7) For any two 
adjacent zeros a, ($ E Rk we select a zero 7 of / ( f c + 1 ) by means of Rolle's theo­
rem, provided one exists not listed in (1). This new zero 7 may be different from 
the xt\ it may be one of the xt, but not listed in (1) as a zero of/^fc+1^; finally, 
7 may appear as an additional multiplicity of a zero xt of/( /c + 1 ) b y (1). In this 
case, et k + 1 = • • • = et k + t = 1, et k + t+ï = 0. If no zero 7 as specified exists, 
there is a loss, (ô) We adjust the multiplicities in the last case of (7): if also 
ei,k + t+2 ~ * * # == ei k+s+i = 0> t" i en y belongs to Rfc+1 with multiplicity s. A 
Rolle set constructed without losses is maximal. A function ƒ annihilated by E, X 

may have several Rolle sets, some of them maximal, others are not. Let mk be 
the number of ones in the column k of E, let 

(2) /!* = ( • • • ((m0 - 1)+ + ^ ! - 1)+ + • " • + ™k-i ~ 1)+ + mk. 

LEMMA 1. The number of distinct Rolle zeros of f^ in a maximal Rolle 
set is exactly fxk. 

Let E be a Birkhoff matrix, let E° be derived from E by replacing a one, 
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et q = 1, 1 < i0 < m by zero, let E', E" consist of rows 1, . . . , i0 and i0, . . . , 

m of E°. Let M£, Mfc> M̂  be defined for the matrices by (2). 

LEMMA 2. Ifeiq-l9 one has r = ju° - [xq - M^ > 0, dwd /ƒ, m addition, 

A set F C [0, &] is independent with respect to (J if for each I C 7 , each 
polynomial P annihilated by E, X has a maximal Rolle set. Results on indepen­
dent sets are based on inequalities of Markov type and on 

LEMMA 3. For each I > 0 there is a number d > 0 with the property that 

if P(pt) = P(j3) = 0, j3 - a > I, then at least one point a + d<%<(3-d satis* 

fiesP'(C) = 0. 

THEOREM 1. There exist independent sets Y = {.y^J^T.^ so that a < 
• • • < y_s < • • • < ys < • • • < b\ the ys can be defined inductively; at each 

step it is enough to take ys (or y__s) sufficiently close to b (or to a). 

THEOREM 2. If Y =* {ys}*J*__oo is an independent set, there exist points 

zst in (ys, ys+1) so that the set formed by all zst and all ys is independent. 

LEMMA 3. Let l<s<i0<t<m. There exists an independent set 
(xx, . . . , xm) and an interval I — [c, d] C (xt __x, xi + 1 ) so that: (i) If P is 
annihilated by E, X, then Rolle zeros of P are derived only from xt, s < i < t; 
(ii) problem (1) for E, X is regular if xt G /, and row i0 of E is consevrative. 

By means of these results we can estimate the number of changes of signs 
of determinants DE(X) of (1). Let U = P. 

THEOREM 3. If X is as in Lemma 3, and if row i0 of E has exactly one 

odd supported sequence beginning with ei = 1, then, as x{ moves from c to 

d, DE(X) changes sign at least r times. If Xf, X" have xt in the extreme po­

sitions, 

(3) sign DE(X') = ( - If sign DE(X"). 

COROLLARIES. 1. If E is a Birkhoff matrix, s = \,t - m, then r > 0 

and E is strongly singular. This is the main theorem of [2], but with a precise 

number of changes of sign. 

2. Assume that row i0 consists of disjoint portions S -, j = 1, . . . , p, 

which follow each other. Let matrix E. have rows s, . . . , t of E, with row i0 

replaced by three rows S j U ' - U S . ^ , Sf, and Sj+l U • • • U Sp. Let S. 

have exactly one odd supported sequence in E- with 7y constructed as in Lemma 

2. Then E is strongly singular if 2ry. + o is odd, where o is the difference of the 

interchanges of rows for the two coalescences ( • • • (S% U S2) U • • • U Sp) U 
E. + 1 and Sx U (S2 U • • • U (Sp U Ef + 1 ) • • • ). Ifs=l,t = m, this is the 

criterion [1, Theorem 2.3]. 
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3. If s =£ 1, t =£ m, we obtain new criteria. One notices the phenomenon 
that a submatrix F of E may be "so bad" that any of its extensions to a Birkoff 
matrix is strongly singular. 
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