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(1) Lsv\y(t\ e)] s a(et; e) ^ f + eb(et; e) % + c(et; e)y = 0, 

0. Introduction. This note concerns the study of the equation 

ù 
at2 

subject to the initial conditions 

(2) X 0 ; e) = 7, / ( 0 ; e) = Ô 

where e is a small parameter such that 0 < e < e0 for some e0 > 0, while 7 and 
ô are constants independent of e. We present a method for multivariable expan­
sions of the solutions of this problem which is a generalization of the technique 
employed by E. L. Reiss [1] in the treatment of the problem 

L \y(t\ e)] = y" + ley' + y = 0, t > 0 (' = dldf), 

X0;e ) = 0, / ( 0 ; e ) = 1. 

An important contribution of our study is the discovery of a method for 

systematically generating time scales from the differential equation itself. 

1. Derivation of time scales. Consider an interval D which includes t = 0 
and impose the following conditions: 

(C.l) The functions a, b, c are analytic in D. 

(C.2) The functions a, b, c, do not change sign in D. In particular, a and 
c are never zero in D. 

dtj+1 dt; 
(3) ry = ry(ef;e); — ^ — = 0(e-fi) uniformly in D. 

The last condition insures that each time scale is to be "slower" than the pre­
ceding one. 

It is assumed that the multivariable expansions yield "generalized uniform 
asymptotic expansions" in the sense defined below. 

DEFINITION. Let {Sj{t\ e)} be a sequence of functions defined for t E D 

and 0 < e < e0 for some e0 > 0, and let {/y(e)}, e —• 0, be an asymptotic se­
quence. Then XJL0Sj(t; e) is a generalized uniform asymptotic expansion of 
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y(t\ e) in D to (M 4- 1) terms if the remainders Rk(t\ e) satisfy 

(4) R\t; e) s y(t; e) - £ tyf ; e) = 0 ( f r + 0 

for each A; G {0, 1, . . . ,M}. 
To derive the time scales let 

(5) y=y0(r9tQ9...9tN)+R0(t;e) 

where r = et and /*°(f ;e) = 0(e). Next, postulate the form ofy°(r; t0,. . . , r^): 

I. If a > 0, c > 0, 6 > 0 (or b < 0), then let 

j ° ( r ; ^o ' • > • ,tN) = e 
(6) 

x ^ / - o - 2 • • • • / + 5 e > v * 0 , * 2 • . . . ^ 

II. If a > 0, c < 0, & > 0 (or 2? < 0), then let 

„ 0 / _ , , x _ - < ' i + * 3 + - > 

./<*0 + '2 + ~> , „ -^0 + ̂  + ...), 

Ar;r0 y = r ( ^ ^ 
(7) 

In (6) and (7) .4 and B are constants to be determined from initial condi­
tions. They are independent of e. 

Substituting (5), (6) or (7) into (1) and setting the coefficients of eJ to 
zero for ƒ = 1, . . . , N 4- 1, leads to equations for the time scales. All the 
scales are determined by initial value problems involving first order linear ordin­
ary differential equations. In general, 

(8) dtjdt = (e/2)**fc(r; e); tk(0) = 0, 

where the g-functions are determined recursively. 

2. Expansions. We seek expansions of the form 

M 

(9) y = £ «Vos 'o> • • • >*N) + *"('; e>> 

where RM(t; e) = 0 ( e M + 1 ) and the scales have been determined as in §1. 
After substituting (9) into (1), the coefficients yJ are obtained by setting the 
coefficients of e\ I = 0, 1, . . . , M 4- N, to zero. This leads to partial differ­
ential equations for the coefficients. The solutions for these equations are gen­
erally indeterminate but they are made determinate when we substitute (9) into 
(2) and set the coefficients of powers of e to zero as far as we can go. 
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The expansions are generalized uniform asymptotic expansions in the sense 
of (4) and can be shown to be uniformly valid in the interval D. For Case I we 
have the following 

THEOREM. If the time scales are given by (8), then for N> 1, (9) is a 

(M 4- \)-term-{N + X)4ime generalized uniform asymptotic expansion of the 

solution of (I) and (2) in the interval D. The error RM(t\ e) satisfies the inequal­

ities 

(10) \RM(t; e)i < 
\Y%* I x \\U2\\ + B/e, if M is even, 

^o I x || U2\\ + B/e, if M is odd. 

The quantities in (10) are defined as follows: 

(11) J f = 7 Z I I e ^ ' + D + g Z î l e * " 2 ' , 
0<s<[(N-l)/2] 25+1 Kr<[N/2] 2r 

(12) r f = 0 E A e M + ^ + 1 > + 7 Z A<^+2r 

0<s<[(N-l)/2] 2s+l Kr<[N/2] 2r 

and [x] denotes the greatest integer less than or equal to x. In (11) and (12) 
IT; and A. are constants. 

U2 is the principal solution of 

r r -, „ ebjet; e) , , c(et; e) n L\y\ = y + , — z - y + -7 (y = 0 

satisfying /72(0) = 0, t/2(0) = 1. The number B is given by 

»*/0 4 a ; e) » 

where G*(t, s; e) is the Green's function for the operator L\y] and r^" is given by 

M + 2+N I \ 

/=M+iV+l \j+k=l;0<j<M ) 

Finally || • || = max,G D | • |. 

It is to be observed that the bounds on the error in (10) are expressed ex­
plicitly in terms of the initial conditions 7 and ô. Three lemmas are needed to 
prove the theorem; these lemmas give the detailed relationship between the co­
efficients, the number of time scales used, the number of terms in the expansion 
and the initial conditions. Applications of the results have been made in a num­
ber of specific examples including some well-known classical problems of pertur­
bation theory [2]. 
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