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This note is to announce a characterization of (generalized) path spaces 
satisfying the Osterwalder-Schrader positivity condition by the associated semi­
group, on the lines of the characterization of Markov path spaces by positivity 
preserving semigroups (e.g. Simon [5] , Klein and Landau [3]). In the semi­
group characterization Osterwalder-Schrader path spaces are seen to be the natu­
ral generalization of Markov path spaces. As an application we discuss the exis­
tence of Euclidean fields given a relativistic Wightman field theory. 

I. Path spaces and semigroups. A (generalized) path space ((Q, 2, p), 2 0 , 
U(t), R) consists of a probability space (Q, 2, p)\ a distinguished sub-a-algebra 
2 0 ; a one-parameter group U(t) of measure preserving automorphisms of 
LooiQy 2, p) which are strongly continuous in measure; a measure preserving 
automorphism R of L^iQ, 2, p) such that R2 = ƒ, RU(t) = U(-t)R, and RE0 

= E0R where E0 is the conditional expectation with respect to 2 0 ; where 2 is 
generated by \JtGR 2 , , 2 , = U(t) 2 0 . By E+ (EJ we will denote the condi­
tional expectation with respect to 2 + (2_) , the a-algebra generated by \Jt>o ^t 

(Uf<o 2f)* The P a t n s P a c e i s sa id t o t>e Osterwalder-Schrader if (RF, F)> 0 

for every F G L2(Q, 2 + , p). It is said to be Markov if RE0 = E0 and E+E„ = 
E+E0E__. 

Every Markov path space is Osterwalder-Schrader [4] . In the case of a 
Markov path space P{t) = E0U(t)E0 gives a positivity preserving semigroup on 
L2(Q, 2 0 , p) [5] , [3]. Given an Osterwalder-Schrader path space there exists 
[4] a Hubert space H and a contraction I/: L2(Q, 2 + , p)—+ H such that 1/ has 
dense range and P{t)\J{F) = V(U(t)F) for F G L2(Q, 2 + , p) and t > 0 defines 
a strongly continuous self adjoint contraction semigroup on H. If £2 = 1/(1), 
then llftll = 1 and P(t)a = £2 for all f > 0. 

For Osterwalder-Schrader path spaces we must look at another piece of 
structure, which is hidden in the Markov case. 

LEMMA. Let ((Q, 2, p), 2 0 , U(t), R) be an Osterwalder-Schrader path 
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space, and let H, I/, P(t\ ft be as above. Then, iffeL^Q, 2 0 , /z), ?(/(F) = 
l/(/F) /or F G L2(Q, S + , JU) defines a bounded operator on H witfi 11/ Il = 
11/11̂ , *m<2 21 = { ƒ!ƒ£ £oo(ô> 2 0 , /i)} fe a commutative von Neumann algebra of 

operators on H, with £1 as a separating vector. Moreover, for any tx <t2 < 
• • '<tn9fti=U(ti)fiwherefieL^(Q, X0, fi) and i = 1,2, . . . ,n, 

(H, i^O* ?l> ̂ ) i s called the associated semigroup structure. If ((Q, S0 , JU), 
S0 , U(t)9 R) is a Markov path space, (L2(Q, S 0 , jtx), EQU(t)E09 LJQ, S 0 , M), 1) 
is its associated semigroup structure. 

DEFINITION. A positive semigroup structure (ff, P(0> 1» ^ ) consists of 

a Hijbert space tf ; a strongly continuous selfadjoint contraction semigroup P(t) 

on H; a commutative von Neumann algebra 21 of operators on \\\ a unit vector 

£2 G H; such that P(t)Çl = ft for all t > 0; ft is a cyclic vector for the algebra 

generated by 21 U {P{t)\t > 0}, i.e. the linear span of {Pif^fiKh) • • • 

P(tn)fnSl\fl9 . . . , fn e 21, tl9 . . . , tn > 0} is dense in tf; and for all fl9 . . . , 

ƒ„ e 2l+ = {ƒ G 211/ > 0} and tl9...9tn>09 <ft, P ^ ) / ^ ) " " * 

/ttn)/nn> > o. 
Osterwalder-Schrader path spaces are characterized by positive semigroup 

structures. 

THEOREM. Let ((Q, 2, JU), S0 , U(t)9 R) be an Osterwalder-Schrader path 
space and (H, P(t)9 21, ft) #s associated semigroup structure. Then (H, JP(0> 21, 
ft) forms a positive semigroup structure. 

Conversely, let (H, P(t)9%9 ft) be a positive semigroup structure. Then 
there exists an Osterwalder-Schrader path space such that (H, P(t)9 ?l, ft) is its 
associated semigroup structure. 

COROLLARY. Let ((Q, S, IJL), S0 , U(t)9 R) be an Osterwalder-Schrader 

path space, and (H, P(t)9 Ö, ft) its associated semigroup structure. The path 

space is Markov if and only if ft is a cyclic vector for U. 

The details will appear elsewhere [2]. 

II. Existence of Euclidean fields. Our Theorem can be used to construct 
Euclidean fields given a relativistic Wightman field theory, in the same way 
Simon ([5] , [6, Chapter IV] ) used the similar result for Markov path spaces and 
positivity preserving semigroups to construct Euclidean fields. In Simon's 
scheme Axioms (S3) and (S4) [6, p. 120] are the basic elements in the con­
struction of Euclidean fields. We can replace these axioms by the weaker: 

AXIOM 3'. The von Neumann algebra U generated by the time zero fields 
is abelian; and the vacuum ft is a cyclic vector for the von Neumann algebra 
generated by the fields at all fixed times. 
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AXIOM 4'. For all F x , . . . , Fn G 91+ = {F G %\F> 0} and tl9 . . . , tn 

> 0, < a e-^HFle"t^HF2 • • • e"fnHFnSl) > 0. 
We can then construct Euclidean fields satisfying Nelson's axioms, except 

for the Markov property which is replaced by the Osterwalder-Schrader positivity 
condition. 

A detailed version of our axiom scheme will appear elsewhere [1], [2]. 
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