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Starting from a result due to H. Rosenthal (see Lemma 1.3 in [6]), we 
present a new result which outlines a geometrical condition for the existence of 
a weak order unit (i.e., a total element) in the dual of a Banach lattice: the non­
existence of a lattice isomorph of a space lx(F) for F an uncountable set (see 
Theorem 2 below). As a consequence we obtain that the dual of a Banach space 
E having local unconditional structure (as defined in [1] has the Radon-Nikodym 
property iff E does not contain a copy of lx. R. C. James constructed, in [3], 
an example of separable Banach space / with a nonseparable dual such that c0 

and lx do not embed in J. Consequently J does not have local unconditional 
structure. 

Let L be the class of all Banach spaces X satisfying the following two 
conditions: 

(LI) X' is an order complete Banach lattice; 
(L2) there is a v G X" such that x G X, \x| A \v\ = 0 implies x = 0. 
Each Banach lattice with a weak order unit, or each predual of an L1(JJL) 

space, belongs to L. 

1. LEMMA. If X G L, then there exists an order complete Banach lattice 

E with a weak order unit and a lattice isometry i: X' —> E' such that: (a) i(X') 

is complemented in E\ and (b) i(X') is formed by order continuous functionals 

on E. 

Hint. Consider for E the band generated by v in X". 

If Z is an order complete Banach lattice and A C Z is a closed subspace, 
then we shall denoted by 2 (4 ) an order complete closed sublattice of the band 
generated by A such that A C 2 (4) . 

2. THEOREM. Let E G L and let A C E' be a closed subspace. Then 
either: 

(i) 2 (4 ) has a weak order unit u > 0; or, 

(ii) A contains an isomorph ofl^F) (for F an uncountable set) that is 

complemented in 2 (4 ) , and 2 (4) contains a lattice isomorph ofl^F). 

AMS (MOS) subject classifications (1970). Primary 46G10. 
Key words and phrases. Weak order unit, band projection, weakly compactly gen­

erated Banach space, unconditional constant. 
Copyright © 1976, American Mathematical Society 

748 



BANACH LATTICES WITH A WEAK ORDER UNIT 749 

Note. The hypothesis that E G L is crucial; e.g., consider the case E = 
12{2N). 

3. COROLLARY. If E is a Banach lattice with a weak order unit, then 

either E' has a weak order unit or E( contains a lattice isomorph of a non-

separable lt ( r ) space. 

4. REMARK. It is possible that E and E' both have a weak order unit and 
E' contains a complemented isomorph (but not a lattice isomorph) of lx(2

N). 

For example, consider E = ( 2 / ^ ) ) , . (See [2] for details.) 
5. REMARK. If E is a Banach lattice, then condition (i) can be restated in 

terms of absolute continuity: 
(i') For every e > 0, every x G E+, and every a' G 2(4), there is a ô = 

ô(e, x, a') > 0 such that \y\ < x, u'(\y\) < S, implies \a(y)\ < e. 

6. REMARK. If E G L and E does not contain a complemented copy of 
lx, then E' does not contain a copy of c0 (see [6, Corollary 1.2]) and thus (see 
[7, Theorem 3.7]) each order interval of E' is weakly relatively compact. In 
this case (i) can be restated as follow: 

(i") A is contained in a weakly compactly generated (complemented) sub-
lattice having a weak order unit. 

As a consequence we retrieve Lemma 1.3 in [6]. 
Recall that a Banach space Z has local unconditional structure (l.u.st.) if 

there exists a positive X > 0 and a directed net {Za}a of finite dimensional sub-
spaces such that Z = U Z a and each Za has a basis whose unconditional constant is 
< X. The usual Banach spaces all have l.u.st. We next extend a well-known result 
due to James for Banach spaces with an unconditional basis. 

7. THEOREM. For a separable Banach space E having l.u.st., the following 

assertions are equivalent'. 
(a) E' has the Radon-Nikodym property (i.e., every integral operator from 

a space C(S) into E' is nuclear); 
(b) E does not contain an isomorph of lx ; 
(c) E' is weakly compactly generated. 

Therefore, if E is a separable Banach space with l.u.st., then E' is separable if 

and only if E contains no isomorph of lx. 

If Z has l.u.st. and F is a separable subspace of Z, then there is a separable 
Banach space X with l.u.st. such that Y C X C Z. (See the proof of Lemmas 
3.1 and 3.2 in [4].) Consequently, the equivalence (a) <=* (b) holds also in the 
nonseparable case. 

The implications (c) => (b) =>• (a) are well known. We next prove that (b) 
=» (c). By virtue of Theorem 2.1 and Corollary 2.2 in [1], there exists a separable 
Banach lattice L D E and an isomorphism 0 from E' into L' such that i' ° 0 = 
\E', where i: E —+ L denotes the canonical embedding. A result due to Pefczyriski 
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and Hagler (see Studia Math. 46 (1973), 35—42) implies that E' does not con­
tain a copy of lx(r), for T an uncountable set, so by our Theorem 2 above, <t>(E') 
is contained in the band generated by a positive u G V. We conclude by using 
a technique due to H. P. Lotz. For each x G / / , x > 0, let us denote byIx>, 
the ideal generated by x and normed by 111 • 111 = inf {X > 0; | • I < Xx'}. 
Then 7^, is lattice isometric to a C(S) space. By Corollary 1.2 in [6], E' does 
not contain a copy of c0 and thus the composition jx

rIx' —• L' -*-• E' is weak­
ly compact (see [7, Theorem 3.7]). Since Ix> has the Dunford-Pettis property, 
jx> maps decreasing sequences of positive elements of Ix> into convergent se­
quences of elements of E'. Since jx> is w'-continuous (in fact jx> is an adjoint), 
we obtain that jx> is order a-continuous for each x > 0. Then E' — 

Spani'[0,u']. Q. E. D. 

ADDED IN PROOF. We have learned that Corollary 3 above is known (for 
separable Banach lattices) to H. P. Lotz and to H. Rosenthal. 
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