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other series of polynomials are also useful, just as series of polynomials other 
than {zn} are important in complex analysis. Temperature functions possess 
a maximum principle, a reflection principle, and uniqueness theorems show­
ing how they are determined by various kinds of data; there is even an 
analogue of Liouville's theorem. For a suitably restricted subclass of tempera­
ture functions there is Huygens' principle (which gets its name from a quite 
different analogous theory, optics, i.e. the theory of the wave equation); this 
says that the values of the function for some / can be used as initial data for 
determining the function at later values of /, in much the same way that we 
can take the values of an analytic function on a contour and use them in 
Cauchy's formula to calculate the function inside the contour. (Poisson's 
formula for harmonic functions is perhaps a closer analogue.) The analogy 
between positive temperature functions and positive harmonic functions has 
already been mentioned. One chapter is devoted to the use of Jacobian theta 
functions for solving the heat equation in a finite x-interval; the occurrence 
of these functions is less surprising than one might think, since the theta 
functions are series of functions k(x, t) or kx(x, t); they also occur in the 
construction of the Green's function for an (x, /)-rectangle. One chapter 
indicates some possible generalizations to higher dimensions; another dis­
cusses homogeneous temperature functions (u(\x, X2t) = \nu(x, t)). A final 
chapter considers several special topics. 

The book is written in the author's customary polished but condensed style. 
Much of it consists of simplified versions of his own previous work. The 
results seem, generally speaking, to be more difficult than their analogues in 
complex analysis; I do not know whether this is because the latter theory is 
longer established or because problems about the heat equation are inherently 
more difficult than problems for Laplace's equation (as suggested to me by A. 
Friedman). It seems likely, however, that many additional interesting results 
are waiting to be discovered (or invented, depending on our philosophy of 
mathematics). Anyone who wishes to participate in the search should have 
this book at hand. 
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Continuous flows in the plane, by Anatole Beck, Die Grundlehren der 
Mathematischen Wissenschaften in Einzeldarstellungen, Band 201, 
Springer-Verlag, New York, Heidelberg, Berlin, 1974, x + 462 pp.,$46.80. 

A flow in a space A" is a (continuous) group action of the real line on X; 
that is, a continuous function <p: R X X-* X such that <p(r + s, x) = 
<p(f, q>(s, x)). Behind this simple analytic veil lies, in the case where X is the 
plane R2 (or the two-sphere S2), a beautiful geometric theory. The plane 
becomes a patchwork quilt. The patches come in infinitely varied and 
intriguing patterns, that, nevertheless, admit to a surprising amount of classi­
fication. 
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The goal is to disassemble the quilt, describe the individual patches, and 
sew them back together the way they were. This approcach is geometric, 
topological-in contrast to the classical analytic approach, with its less perva­
sive geometric flavor. 

There are easy patches and there are tough patches, and there are patches 
within patches, even a telescoping infinity of patches within patches. One 
takes on the easy patches, then does the best one can with the tough ones, 
utilizing the information obtained about the easy ones-and then some-and 
leaves the rest of the job to posterity. 

One can, of course, start this program with the simplest nontrivial mani-
fold-the line itself. While there is more to the question than immediately 
comes to mind, the topological-geometric approach soon exhausts all possibi­
lités. The next step is the plane, a natural habitat for flows in any event. The 
two sphere, in this program, is essentially the same as the plane. 

One begins by examining orbits G(x) = {<p(s, x): s G R). There are three 
kinds: (1) one-one images of R, (2) circles (periodic orbits), and (3) points 
(fixedpoints of <p). Fixed points and periodic orbits are closed, but the other 
kind may not be, so one looks at &(x) = G(x) u OL^X) U ^(X), where 
%(x) = n,GR{<pO> x): t < s}~ and ^(x) = n , e R {(pO, x): s < t}~, the 
sets of a- and œ-endpoints of 0(x), respectively. 

To see what these endpoints might be, one tries to trap a tail of 0 (x) in a 
bounded region of the plane. This is done by the important and very useful 
Gate Theorem. (Actually, there are two Gate Theorems, together requiring 
two pages to state.) The main idea is to find an orbit Q(x) and an arc L0 

joining two points cp(tv x) = xv <p(t2, x) = x2 on 6 (x) such that the compact 
region bounded by the Jordan curve J = (y[tv t2\ x) u L0 can be "entered" 
by an orbit only through the "gate" L0, and once entering cannot turn back 
(the flow has direction-orbits do not go against the current). Thus, by the 
Jordan Curve Theorem, one end of the orbit is trapped in a bounded region 
of the plane, and so has compact closure. The set of a- (or co-) endpoints so 
obtained is therefore compact. Such endpoints can be circular orbits, in which 
case the geometric pattern is, to a large extent, discernible, or they can be 
fixed points which are called, under such circumstances, stagnation points, 
where the theory becomes both more complicated and less comprehensive. 
For flows in the plane, here lies the frontier. 

There are, as one can readily see, other types of fixed points. For example, 
the covering group of the rotation group in the plane has precisely one fixed 
point, and it is not an endpoint of any orbit. Such fixed points are called 
regular fixed points. This distinction between types of fixed points is probably 
the most important step in opening the "gate" to the mysteries of flows in the 
plane. Previously, in the study of flows, a fixed point was a fixed point was a 
singularity, and was obnoxious. But really the only obnoxious fixed points are 
stagnation points. 

As with fixed points, there are regular and singular moving points. A 
periodic orbit is singular if it has points arbitrarily close that have stagnation 
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points. Those which are not singular, are regular. The regular moving points 
are the union of disjoint annuli; the singular moving points are what is left of 
the moving points. The description of the flow then is given in terms of the 
regular moving points, where it can be completely described in terms of 
simple "patches"-certain standard annular flows; the fixed points-where it is, 
of course, fixed; and the singular moving points-where life gets complicated. 

To develop the theory for singular moving points, the author first considers 
a very special case: the case of flows in a multiply-connected region of the 
plane where every orbit is aperiodic and has all its endpoints in the boundary. 
These he calls Kaplan-Mar kus flows, after the two who first began develop­
ment of the theory of such flows. Complete success in describing such flows 
has eluded the author and his coworkers except, to some extent, where the set 
of singular fixed points has only finitely many components. The later is, 
however, basic, and so for many cases, another patch in the quilt yields to 
description. After this, the author explores various ways to combine such 
flows with regular flows and develop further theory. 

Flows without stagnation points can be described rather completely. For 
flows with a finite number of stagnation points, or whose set of stagnation 
points has countable closure, a considerable amount is known, though the 
information is not as complete as for the no stagnation point case. In all cases 
where a description is possible, it is the set of regular moving points that 
supplies the main body of information. However, the author and his 
coworkers have developed a great deal of information about the singular 
moving points, forming therewith organs of the flow, which in turn are 
decomposed into tissues and gametes, and these in their turn are decomposed 
into cells. These "cells," "gametes," and "tissues" are pretty well char­
acterized, and even the "organs" are subject to a good deal of description. 

Some additional concepts have been studied, such as the algebra of flows 
introduced by J. and M. Lewin. One could say that, as of 1975, it is the 
complete book about flows in the plane. It is accessible to anyone with a 
minimal background in analysis and point set topology-provided one sticks 
to it sufficiently to keep track of all the terminology and notation peculiar to 
the book. It is light reading (except for that)-yet builds a substantial theory. It 
is well written and enjoyable. 

PAUL S. MOSTERT 
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Gaussian measures in Banach spaces, by Hui-Hsiung Kuo, Lecture Notes in 
Math., no. 463, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 
vi + 224 pp., $9.90. 

There are difficulties in constructing measures on infinite dimensional 
spaces. Even in a separable infinite dimensional Hubert space the unit ball is 
not compact. Therefore a countably additive measure on such a space cannot 


