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FIXED POINT THEOREMS IN PROBABILISTIC ANALYSIS 

BY A. T. BHARUCHA-REID 

1. Introduction. Probabilistic operator theory is that branch of probabilistic 
(or stochastic) analysis which is concerned with the study of operator-valued 
random variables (or, simply, random operators) and their properties. The 
development of a theory of random operators is of interest in its own right as 
a probabilistic generalization of (deterministic) operator theory; and just as 
operator theory is of fundamental importance in the study of operator 
equations, the development of probabilistic operator theory is required for the 
study of various classes of random equations. 

Although several concrete examples of random operators and random 
operator equations have been around for a long time, the systematic study of 
probabilistic operator theory and its applications was initiated by the Prague 
school of probabilists under the direction of the late Antonin Spacek in the 
1950's. They recognized that in using operator equations to model various 
systems (which is the heart of applied mathematics) it is usually not sufficient 
to consider only random initial data, it is also necessary to take into 
consideration the fact that the operators used to describe the behavior of 
systems may not be known exactly. For example, in the case of difference 
and differential operators the coefficients (constants or functions) might not 
be known exactly. One knows only their approximate values together with 
some measure of the possible error. In the case of integral operators, the 
kernel might not be known exactly; this being the case when either the 
integral equation is the primary model of a system, or when it is the 
equivalent formulation of a differential boundary value problem used as a 
model. In many studies workers use what might be termed mean coefficients 
or kernels, thereby casting their problems in the framework of deterministic 
operator equations. The main disadvantage of this approach is that, in 
general, a considerable amount of 'information' is lost concerning the be­
havior of the system. In the theory of random operator equations the 
coefficients or kernels are assumed from the outset to be random variables or 
random functions; and the solutions obtained (if they exist) are random 
functions whose dynamical and statistical properties can be studied. 

It is of interest to remark that the distinction between a deterministic and 
probabilistic approach to the formulation of operator equations lies mainly in 
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the nature of the questions they try to answer, and in the interpretation of the 
results. The advantages of a probabilistic approach are that (1) it permits 
from the initial formulation a greater generality (and hence flexibility) than 
that offered by a deterministic approach, and (2) it permits the inclusion of 
probabilistic features in the equations, which may play an essential role in 
making the connection between operator equations and the real phenomena 
they purport to describe. 

Research in probabilistic operator theory generally falls into one or more of 
the following areas: (1) operator-valued random variables and their proper­
ties, (2) operator-valued random functions (including semigroups of random 
operators) and their properties, (3) random equations whose solutions are 
operator-valued, (4) spectral theory of random operators, (5) measure-theore­
tic problems, (6) fixed point theorems, and (7) limit theorems. In my invited 
talk I was able to give a brief survey of research in all of the above areas; 
however in preparing this article I have elected to restrict my attention to just 
one of the areas-namely, fixed point theorems for random operators. 

In §2 we give some definitions of random operators, and give a few 
examples of random operators. We give only those definitions and concepts 
which are used in this article. For a detailed discussion of random operators 
and their properties we refer to [6]. §3 is devoted to the statement of three 
well-known fixed point theorems-namely, those of Banach, Schauder, and 
Krasnosel'skiï. In §4, which is the main section of this article, we present an 
account of some random fixed point theorems which are probabilistic ana­
logues of the theorems stated in §3. Finally, in §5 we discuss briefly some 
current research and mention a few problems that might be investigated. 

2. Random operators: Definitions and examples. Let (Œ, ($,, n) be a complete 
probability measure space; and let (%, %) and ( ^ , 6 ) be two measurable 
spaces, where % and ^ are Banach spaces of the same scalar type and 9) 
and Q are the a-algebras of Borel subsets of % and ^ , respectively. We first 
introduce the notion of a Banach space-valued random variable. 

DEFINITION 1. A mapping x: &-* % is said to be an %-valued random 
variable (random element, or generalized random variable) if the inverse image 
under the mapping x of every B E % belongs to 6£; that is, x~l(B) E & for 
all B E © . 

Let T be an operator from 9C to ^ with domain fy(T) c 9C. (We remark 
that, in general, ty(T) will depend on co.) 

DEFINITION 2. A mapping T: Ü X 6 D ( r ) - > ^ is said to be a random 
operator if j/(co) = T(o))x is a ^ -valued random variable for every x E tf)(T). 

DEFINITION 3. A random operator T(co) on 9C is said to be (a) linear if 
T(o))[axl + px2] = aT(o))xx + f3T(œ)x2 a.s. for all xv x2 E fy(T), a, /3 
scalars; and (b) bounded if there exists a nonnegative real-valued random 
variable M(co) such that for all x E tf)(T), \\T(u)x\\ < M(<O)||JC|| a.s. 

DEFINITION 4. A random operator T(œ) on % is said to be (a) continuous at 
x0 if l i m ^ J I * , , - JC0|| = 0 implies l im^^HrCco)^ - r(co)x0|| = 0 a.s.; and 
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(b) stochastically continuous if for every x E 6])(T) and every e > 0, 
Hm]]y_x^0iL({a: \\T(œ)y - T(a)x\\ > e})->0. 

Let £(9C) denote the Banach algebra of all endomorphisms of °X; and let 
?f denote the a-algebra of Borel subsets of £(9C), provided the norm topology 
is assumed. 

DEFINITION 5. A mapping T: fi -» (£, ?T) is said to be a random endomor-
phism of 6X if T(œ) is an £(9C)-valued random variable, that is T"\F) E & 
for every F E ?T. 

We now introduce the notion of a separable random operator (cf. [44]), a 
notion that is useful in probabilistic operator theory (cf. Kannan and Salehi 
[32], Nashed and Salehi [46]). 

DEFINITION 6. A random operator T(co) on a Banach space % is said to be 
separable if there exists a countable dense set S in % and a negligible set 
N E & such that {co: T(co)x E # , x e F] A (co: 7((O)JC E # , JC E F n S) 
C N for every compact set K and every open set F. 

Let /ƒ be a Hubert space with inner product ( •, • ). Random operators on H 
to itself can, of course, be defined using Definitions 1 or 5; however the 
following definition is frequently employed. 

DEFINITION 7. A mapping T: fi X H —> H is said to be a random operator 
on H if the function (T(u>)xx, x2) is a scalar-valued random variable for every 
xv x2 E H. 

We refer to Jajte [30] for an interesting measure-theoretic approach to the 
study of random operators on Hubert spaces. 

We now list a few examples of concrete random operators. 
(i) RANDOM MATRICES. Let % = Rn, n finite. An n X n random matrix 

M (co) is a matrix whose elements m^, /, j = 1, 2, . . . , n, are random vari­
ables; that is, M(co) = (m/:/(co)). A random n X n matrix can also be defined 
as a mapping M: Q, —» £(Rn), or M: £2 -* Rni. Matrix-valued random func­
tions arise in a number of applied problems. In these cases we have M\ 
R+ X £2—>£(/?„). Random matrices constitute a very important class of 
random operators which are encountered in mathematical statistics (cf. John­
son and Kotz [31]) and physics (cf. Mehta [37]). Random matrices also arise 
in the study of systems of algebraic, difference, and differential equations 
with random coefficients. 

(ii) RANDOM DIFFERENCE OPERATORS. Let % = /2. A random difference 
operator on /2 to itself can be defined as follows: 

*»[**] = É « , ( « ) T K ] . 
z ' = l 

where T' denotes the translation operator T^JCJ = xk + i, i = 0, 1, . . . , n, and 
the ^(co) are real-valued random variables. Random difference operators arise 
in the study of discrete-parameter random dynamical systems; and many 
random difference equations have been studied in biology, economics, en­
gineering, and time series analysis. 
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s(")M = ̂  -^2+v(o>w, 

(iii) RANDOM ORDINARY DIFFERENTIAL OPERATORS. Let % = C[a, b], and 

let C(n\a, b] denote the subspace of C[a, b] consisting of all functions x(t) 
whose first n derivatives are continuous. We can define a random differential 
operator on C(/ ,) to C as follows: 

7 » [ * ( / ) ] = 2 a * ( « ) ^ , te[a,b]9 
k = o at 

where the coefficients ak(u>) are real-valued random variables. In some 
applications the coefficients are real-valued random functions ak(t, co), / E [a, 
b]. Ordinary differential equations with random coefficients are perhaps the 
most widely studied class of random equations (cf. Soong [59]). 

(iv) RANDOM PARTIAL DIFFERENTIAL OPERATORS. A number of concrete 
problems lead to the study, on appropriate function spaces, of random 
Schrodinger operators of the form 

2m2 dx2 

where F(co) is a random potential, and random diffusion operators of the form 

D (o))\ u] — a(x, co) — - + b(x, co) - 1- c(x, œ)u. 
dx ox v 7 

Random diffusion operators arise, for example, in the diffusion theory of 
gene frequencies (cf. Dale [15]). An interesting problem in probabilistic 
operator theory is to determine conditions which imply that random partial 
differential operators of the above form are infinitesimal generators of semi­
groups of random operators; that is, of operator-valued random functions T: 
R+ X Q-^ £(%) such that T(tv u)T(t2, co) = T(tx + t2, co) a.s. and 
7X0, co) =1 a.s. 

Random Helmholtz operators of the form Ai// + k\ji2{r, co);//, where n2 is the 
index of refraction (assumed to be a random function), arise in the study of 
wave propagation in random media (cf. Frisch [17]). 

(v) RANDOM INTEGRAL OPERATORS. Of the several classes of random equa­
tions which have been studied, random integral equations (and random 
differential equations formulated as random integral equations) have been 
studied most extensively (cf. Bharucha-Reid [6], and Tsokos and Padgett 
[62]). In particular, linear random Fredholm and Volterra operators of the form 

F ( u ) [ ƒ ( * ) ] = fbK(x,y, U)f(y) dy and 
Ja 

V(U)[f(x)] = (XK(x,y,u)f(y)dy, 
J a 

as well as nonlinear random Uryson operators of the form 

£ / ( « ) [ ƒ ( * ) ] - fbG(x,y,f(y),a) dy. 

In these examples the limits of integration are given, but in many problems 
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these limits themselves are random variables. We remark that an integral 
operator with a random kernel can often be expressed as an integral operator 
with a deterministic kernel, but the region over which the integral is defined is 
a random set. 

3. Some well-known fixed point theorems. Let % be a Banach space, and let 
T be an operator mapping 6X into itself. 

DEFINITION 8. An element x E % such that Tx = x is said to be a fixed 
point of T. 

It is clear that the set of fixed points of an opeiator T is the same as the 
solution set of the eigenproblem (T — Xl)x — 9, corresponding to the eigen­
value X = 1. Consider a concrete operator equation Sx = y in a given Banach 
space. Then finding a fixed point of T is equivalent to obtaining a solution of 
the operator equation Tx = Sx — x — y. 

In general, fixed point theorems fall into two classes: (1) topological fixed 
point theorems, and (2) algebraic, or constructive, fixed point theorems. Theo­
rems of topological type are strictly existence theorems; that is, they establish 
conditions under which a fixed point exists but they do not provide a method 
for finding it. On the other hand, theorems of algebraic type give a method 
for finding a fixed point which can be called an iteration or successive 
approximation procedure. 

In this section we state three well-known fixed point theorems which have 
been widely used in the theory of operator equations. For detailed discussions 
of these theorems we refer to Anselone [1], Bonsall [9], Rail [52], Saaty [53], 
and Smart [58]. For a bibliography of fixed point theorems and their applica­
tions we refer to Thompson [61, pp. 107-134]. Applications of these theorems 
in the theory of random equations will be indicated. Probabilistic analogues 
of these theorems will be given in the next section. 

The prototype of most algebraic fixed point theorems is the contraction 
mapping theorem or principle due to Banach [2]. This is an abstract formula­
tion of the classical method of successive approximation due to Picard. We 
recall that if {%, d) is a complete metric space and T is an operator with 
domain ty{T) and range in 9C, then T is said to be a contraction operator if, 
for all x,y e fy(T), d{Tx, Ty) < kd{x,y), where k e [0, 1). 

THEOREM 1. If T is a contraction operator mapping a complete metric space 
(9C, d) into itself, then T has a unique fixed point {i.e., the equation Tx = x has 
one and only one solution). The fixed point, say, £, can be determined by the 
successive approximations xn + x = Txn, n = 0, 1, . . . {where x0 is any arbitrary 
element of %) which converge to £. The error estimate is given by 

d(xn,è)<(k"/(\- k))d{x0,Xl). 

Actually the contraction condition characterizes, in a certain sense, all 
mappings T from a complete metric space into itself such that for every x in 
the space, the iterates Tnx converge to the unique fixed point of T. The 
following result, due to Bessaga [3], clarifies this. 
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THEOREM 2. Suppose T is a mapping of an abstract set % into itself such that 
each iterate Tn (n = 1, 2, . . . ) has a unique fixed point. Then for each k E (0, 
1) there exists a complete metric d for % such that T is a contraction mapping 
with contraction constant k. 

A useful generalization of Theorem 1 is the following result (cf. Chu and 
Diaz [14], Kolmogorov and Fomin [35]): 

THEOREM 3. If T is an operator mapping a complete metric space % into 
itself, and if Tn is a contraction for some n (where n is a positive integer), then T 
has a unique fixed point. 

Theorems 1 and 3 have found numerous applications in probabilistic 
analysis. In particular, Tsokos and Padgett [62] have used the Banach 
contraction mapping theorem to establish the existence and uniqueness of 
solutions of a number of random Fredholm and Volterra integral equations; 
and Theorem 3 has been used to establish existence and uniqueness of 
solutions of (i) classical Itô integral equations (cf. Bharucha-Reid [6]), (ii) Itô 
equations in Hubert spaces (Cabana [11]), and (iii) Itô equations in scales of 
Hilbert spaces (cf. [6]). Banach's theorem has also been used by Bûche (cf. 
[6]) in his studies of nonlinear integral equations with random right-hand side. 

As is well known, there are a large number of generalizations of Banach's 
theorem, and theorems of Banach type in the literature. To the best of my 
knowledge few if any of these have been used in probabilistic analysis. 

The next theorem we consider is a topological fixed point theorem due to 
Schauder [54]. Schauder's theorem, which we now state, is the most important 
(for analysis) generalization of Brouwer's basic fixed point theorem. 

THEOREM 4. Let T be a continuous operator which maps a compact convex 
subset E of a Banach space % into E. Then there exists at least one element 
£ E E such that T£ = £. 

The above theorem has been employed in probabilistic analysis by Tsokos 
and his colleagues (cf. [62]) who have used it to establish the existence of 
solutions of several classes of random integral equations. 

Krasnosel'skiï's theorem has been used by Tsokos and Padgett [62] to 
establish the existence of solutions of random integral equations of mixed 
Volterra-Fredholm type. 

THEOREM 5. Let % be a Banach space, E a bounded, closed, convex subset of 
%, and S and T operators on E into % such that Sx{ + Tx2 E E for every pair 
xx, x2 E E. If S is a contraction (i.e., \\Sxx — Sx2\\ < k\\xx — x2\\ for all xv 

x2 E E, for some k E [0, 1), and T is continuous and compact, then the operator 
equation Sx + Tx = x has a solution £ E E. 

KrasnoseFskii's theorem is of importance in proving existence theorems for 
perturbed operator equations. In particular, S may be considered as per­
turbed by T, or T might be considered as being perturbed by S. In either 
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case, the theorems assert the existence of solutions of the perturbed operator 
equation. 

Krasnosel'skifs theorem has been used by Tsokos and Padgett [62] to 
establish the existence of solutions of random integral equations of mixed 
Volterra-Fredholm type. 

In all of the above studies which have employed the Banach, Schauder, or 
Krasnoserskifs theorem the general procedure was the same; namely, to 
define an integral operator on an appropriate space of random functions, 
establish its general properties, and then show that the operator has the 
properties required for application of the thoerem. 

4. Random fixed point theorems. Consider an operator equation of the form 
Tx = y in a concrete Banach space %. Probabilistic analogues of such an 
equation are of three types: (1) Tx = y (to), in which the nonhomogeneous 
term, or forcing function, is random; (2) T(co)x = y, in which the operator is 
random and the nonhomogeneous term is known; and (3) T(co)x = y(co), in 
which both the operator and the nonhomogeneous term are random. Equa­
tions of the first type are, in principle, the easiest to solve. Equations 
involving random operators are much more difficult to handle, and most of 
the research in probabilistic operator theory has been devoted to the develop­
ment of techniques for solving random operator equations (cf. [6, Chapter 3]). 

In this section we present an account of some of the random fixed point 
theorems that have been used to establish the existence, uniqueness, and 
measurability of solutions of random operator equations. Let 9C be a Banach 
space, and consider the equation T(œ)x(œ) = y (co) in %. 

DEFINITION 9. Any 6X-valued random variable x(œ) which satisfies the 
condition JU({CO: T(œ)x(u>) = y(u>)}) = 1 is said to be a random solution of the 
random operator equation T(œ)x(u>) = j>(<o). 

DEFINITION 10. An 9C -valued random variable £(co) is said to be & fixed 
point of the random operator T(co) if £(co) is a random solution of the 
equation r(co)£(oo) = £(<°). 

The study of fixed point theorems for random operators was initiated by 
Spacek [60] and Hans [22]. The first systematic investigation of random fixed 
point theorems was carried out by Hans [22]. In this section we state and 
prove several random fixed point theorems, and indicate some applications of 
these theorems. 

Because of the wide applicability of Banach's contraction mapping theorem 
in the study of deterministic operator equations, Spacek and Hans directed 
their attention to probabilistic versions of Banach's theorem and used their 
results to prove the existence, uniqueness, and measurability of solutions of 
Fredholm integral equations with random kernels. 

We first introduce the notion of a random contraction operator. 
DEFINITION 11. A random operator T(co) on a Banach space % with 

domain fy ( T (co)) is said to be a random contraction operator if there exists a 
nonnegative real-valued random variable such that /c(co) < 1, and such that 
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a.s. \\T(u))xl ~ T(œ)x2\\ < k(o))\\xl - x2\\ for all xY, x2 E
 6\)(T(œ)). If k(œ) 

= k (a constant) for all co E fi, then T(u) is called a uniform random 
contraction operator. 

The following theorem, due to Hans [25], is a generalization of earlier 
results of Hans and is a useful formulation for random contraction mapping 
theorems. 

THEOREM 6. Let % be a separable Banach space, and let T(o>) be a 
continuous random operator on % to itself such that 

00 00 

U U Pi n Uur»*,- r»*2|| 
[m=\ A I = 1 xx<E% x 2 G 6 X 

< (i-£)ll*.-* = i, 

vv/jere /<9r eue/j co E £2, x E 9C, a/2<i n — \, 2, ... 9 we put Tl(co)x = T(œ)x, 
and Tn+\u)x = T(co)[Tn(œ)x]. Then, there exists an %-valued random vari­
able £(oo) which is the unique fixed point of T(co); that is, ifl(co) is another fixed 
point, then £(co) = £(co) a,s. 

PROOF. Let E denote those elements of Q belonging to the set 

00 00 

u u n n Uii7"»*! - r"(«)*2ii<(i-^)ii*i-*2ii} 
m = l « = 1 Xl<=% x2Œ% 

for which T(co) is continuous. Clearly E E (£, and, by hypothesis, JU(£) = 1. 
Let the mapping £(oo): fi -» 9C be defined as follows: For every co E £, £(<o) is 
equal to the unique fixed point of T(co); and for every co E fi — E, put 
£(co) = 9 (the null element of %). Then r(co)£(<o) = £(<o) a.s. 

To establish the measurability of the fixed point £(co) we proceed as follows. 
Let x0(co) be an arbitrary 9C-valued random variable, and put xx(co) = 
T(o))x0(œ). x^co) is an % -valued random variable [6, Theorem 2.14], and a 
sequence of 6X-valued random variables can be defined as follows: xn(œ) — 
T(œ)xn_l(œ), n = 1, 2, . . . . Now, since T(co) is continuous, the sequence 
xn(co) converges almost surely to £(<o); hence [6, Theorem 1.6] £(<o) is an 
% -valued random variable. 

The uniqueness of the fixed point follows from the uniqueness of £(oo) for 
every co E E. 

We remark tnat there is no difficulty in proving the measurability of the 
fixed point for random fixed point theorems of the constructive type, since 
the iterative process defines a sequence of % -valued random variables which 
converges a.s. to the fixed point. We will see that this is not the case when 
random fixed point theorems of a topological type are considered. 

We now use Theorem 6 to prove the following random contraction mapping 
theorem. 
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THEOREM 7. Let T(œ) be a continuous random operator on a separable 
Banach space % to itself, and let /c(co) be a nonnegative real-valued random 
variable such that k(u>) < 1 a.s. and \\T(œ)xx — T(œ)x2\\ < k(u>)\\xx ~ x2\\ for 
every pair of elements xv x2 E 9C. Then there exists an %-valued random 
variable £(co) which is the unique fixed point of 7\co). 

PROOF. Let E = (co: A;(co) < 1), F = {co: T(u)x is continuous in x], and 

GXxtX2 = {co: \\T(u)xx - T(co)x2\\< k(o>)\\xx - x2\\). 

Since % is separable, the intersections in the expression 

H n (GXi<Xi n E n F) 

can be replaced by intersections over a countable dense set of ÓX. Therefore 
the condition of Theorem 6 is satisfied with n = 1. 

Random contraction mapping theorems are of fundamental importance in 
the theory of random equations in that they can be used to establish the 
existence, uniqueness, and measurabihty of solutions of random operator 
equations. Probabilistic analogues of Banach's theorem have been used in the 
study of random linear and nonlinear integral equations (cf. Bharucha-Reid 
[4], [5], [6]). Random contraction mapping theorems can also be used to 
establish the existence of random solutions of the Fredholm integral equa­
tions obtained by Boyce [10] in his studies of differential equations with 
random boundary conditions. Random contraction mapping theorems have 
been utilized in the study of stochastic approximation procedures (cf. 
Gardner [19], Hans [24], and Wasan [63]), and have been used by Oza [48] 
and Oza and Jury [49] to obtain an algorithm for the identification of a 
random linear discrete-time system described by a random difference equa­
tion. We refer to Grenander [20] and Sehgal [55] for other random contrac­
tion mapping theorems, and we refer to Driml and Hans [16] and Hans and 
Spacek [26] for some continuous analogues of random contraction mapping 
theorems and their applications. 

We now state and prove an inversion theorem, due to Hans [25], which 
utilizes Theorem 7. This theorem can be used to establish solutions of random 
eigenproblems of the form (T(co) — XI)x = y(o)). 

THEOREM 8. Let T(co) be a random contraction operator on a separable 
Banach space 9C, and let k(uf) be a nonnegative real-valued random variable 
which is bounded a.s. Then, for every real À ^ O such that /c(co) < |X| a.s. there 
exists a random operator S(co) which is the inverse of T(co) — XI. 

PROOF. Since À ^ 0, T(œ) — XI is invertible whenever the random operator 
(\/X)T(co) — I is invertible, and vice versa. However, for every y E 9C the 
random operator 7 (̂co) defined, for every co E £2 and x E 90, by Ty(co)[x] = 
(\/X)T(œ)x — y is a random contraction operator. Therefore, by Theorem 7, 
there exists a unique random fixed point ^,(co) satisfying the relation ^(co) = 
(l/À)r(co)^(co) — y a.s. However, the above statement is equivalent to the 
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invertibility of the random operator (l/À)7"(co) — /, and therefore the invert-
ibility of the random operator T(co) — XL 

The next random fixed point theorem we consider, which is due to 
Mukherjea [40], [41], is a probabilistic version of Schauder's theorem. 

THEOREM 9. Let (£2, 6B, /x) be an atomic probability measure space, and let E 
be a compact {or closed and bounded) convex subset of a separable Banach 
space %. Let T(œ) be a compact random operator mapping E into itself. Then, 
there exists an E-valued random variable £(co) such that r(co)£(co) = £(co) a-s- n> 
such that T(œn)cpn = (pn. Put £(co) = cpn for co E Cn, and 0 otherwise. Then 
T(œ)m = «co). 

A more interesting theorem is the following, due to Bharucha-Reid and 
Mukherjea. 

THEOREM 10. Let E be a compact convex subset of a Banach space and T(œ) 
be a continuous random operator mapping E into itself. Then there exists an 
E-valued random variable £(co) such that 7Xco)£(co) = £(co) a. s. 

PROOF. Let A(œ) = {x E E: T(œ)x = x). Then by Theorem 4, for each co 
the set A (co) is nonempty. Furthermore, for any closed subset F oî E 

(co: A (co) n F is nonempty} = (co: A (co)x = x for some x in F} 
00 00 

= n U {a:\\T(a)Xl - x,\\< l/n) 

where the x/s form a dense sequence in F. It is therefore clear that the set (co: 
A(o)) n F is nonempty) is measurable for every closed subset F of E. To 
prove the theorem, it is sufficient to find an Zs-valued random variable £(co) 
such that £(co) E A (co). It is known that we can associate with the space E a 
sequence of triples (C„, Pn, <£>„) (n a nonnegative integer) such that 

(i) Each Cn is a countable set and Pn maps Cn + l onto Cn\ 
(ii) <£>„ maps Cn into a class of nonempty closed subsets of E of diameter < 

2-n. 

( i i i )£= uceCo*o(<0; 
(iv) for each n and for each c in Cn9 

*„(')= U *„+1(C). 
Pnc' = c 

We assume with no loss of generality that C0 and each P~\c) with c in Cn 

are natrurally linearly ordered such that only finitely many elements can 
precede any element in this order. We now use an idea of Castaing [13]. For 
each n, we intend to find a suitable partition of Œ. We proceed inductively as 
follows: For each c in C0, we define Qc by co E Qc if and only if A(<S) n ^>0(

c) 
is nonempty and ^4(co) n ^ ( O ^s empty for c' E C0, c' < c. Then the Œc's 
are pairwise disjoint measurable sets with union fi. Suppose now that we have 
found a partition of £2 corresponding to the elements of Ck. To do this for 
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Q + 1, we define for c in Ck+l the set S2C by co E S2C if and only co G ÜPk(c) and 
> 4 ( ( o ) n ^ + i ( c ) is nonempty, but A(CÔ) n <bk + l(c') is empty for c' in 
/ V V ^ a n d c ^ c. 

For any positive « and each c E C„ we choose an element x„(c) E 9„(c) 
and define £„(co) = xn(c) for coGÖc where the fic's are members of the 
partition of Î2 corresponding to the elements of Cn. Then each £w(co) is 
measurable and 

||U«) - e,+i(«)|| < 2-", </(£>M(co)) < 2 - . 
Therefore if £(co) = lim £n(co), then £(co) E ,4 (co) and the theorem follows. 
(Note that in this theorem E could be assumed to be a compact subset of a 
metric space instead of a Banach space if each A(co) was guaranteed to be 
nonempty by some other conditions.) 

Theorem 9 has been used by Mukherjea [43] (cf. also [6]) to prove the 
existence of a solution of a random Uryson integral equation in C[0, 1] of the 
form 

I K(t, r, x(r, <O), <O) É/T— X ( / , co) = >>(f, <o), 
-'/(co) 

where 7(co) = [a(co), 6(w)] c [0, 1]; that is, I(o>) is a subset of the interval [0, 
1], where a(co) and 6(co) are real-valued random variables. Mittermeier [38] 
has used Mukherjea's theorem to establish the existence of a random 
equilibrium price vector in his analysis of a random exchange economy. 

It is clear that in probabilistic analogues of classical fixed point theorems of 
topological type, the main difficulty is in establishing the measurability of a 
fixed point. Thus to avoid certain difficulties in Theorem 10, E was assumed 
to be compact (not just closed and bounded) and the random operator was 
assumed continuous. However, with little extra work some of these conditions 
can be relaxed as Theorem 11 will indicate. 

We now state another probabilistic version of Schauder's theorem due to 
Kannan and Salehi [32]. 

THEOREM 11. Let T(o)) be a stochastically continuous random operator on a 
separable Banach space % to itself. Suppose that for each co E 12, {x: T(oi)x = 
x] ¥= 0 (the null set). Then there exists a measurable multivalued map £(co): 
Çl-^>2%such that £(w) = {x: T(u>)x = x) a.s. 

In a number of applications of fixed point theorems in probabilistic 
analysis, it is assumed that a random operator 7\u) satisfies the hypotheses of 
Schauder's theorem for each w £ 8 . Then, if T(co) is a continuous random 
operator it is also stochastically continuous and separable; hence the 
Kannan-Salehi theorem corresponds to a probabilistic analogue of Schauder's 
theorem. Theorem 11 can be utilized to establish the existence of solutions of 
random nonlinear differential and integral equations with monotonie nonlin-
earities (cf. [33], [34]). 

The next random fixed point theorem we consider is a probabilistic version 
of Krasnoserskiï's theorem originally due to Prakasa Rao [51] who initially 
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assumed the probability space to be atomic. 

THEOREM 12. Let (Q, &, /x) be a probability measure space, and let E be a 
compact and convex subset o f a separable Banach space %. Let T(co) and S(œ) 
be continuous random operators mapping % into itself such that (i) S(o))xx + 
T(co)x2 E E for all xx, x2 E E and co E fi, (ii) there exists a nonnegative 
real-valued random variable k(cc) such that \\S(o))xY — S(co)x2\\ < k(œ)\\xl — 
x2\\ for all xx,x2 E E and k(co) < 1 a. s. Then there exists an %-valued random 
variable £(co) such that S(co)£(co) + r(co)£(co) = £(co) for all co E fi. 

The proof of the above theorem follows easily from Theorem 10, observing 
that the operator [/ — S(co)]~lT(o)) is a well-defined continuous mapping on 
E into itself. Theorem 12 has been used by Prakasa Rao [51] to establish the 
existence of a solution of a random integral equation of the form 

x(t, co) = I Kx (t, r, x(r, CO), CO) dr 

+ f K2(t, T, x(r, CO), CO) ds+ y(t, co), / E [ 0 , T]. 

The last random fixed point theorem we consider, due to Mukherjea [42], is 
based on the concept of a resolvent, a notion analogous to the classical 
concept of the resolvent of a kernel in the theory of integral equations. 

THEOREM 13. Let T(uf) be a random continuous linear operator on a separable 
Banach space 9C, and let y(co) be an %-valued random variable. Then the 
random equation T(o))x(co) + y(u>) = x(u>) has, for every y(o))9 a unique ran­
dom solution x (<o) for every co E fi if and only if there exists a random linear 
operator S (œ) such that for every £ E 9C, r(co)£ 4- S{OÙ)£ = T (o))[S (w)Ç\, and 
S(co) — I is onto for each co E fi. Moreover, in the 'if part of the above 
statement the measurability of S (co) is not needed, and it is sufficient for the 
above conditions to hold for almost all co. 

An immediate consequence of Theorem 13 is the following result in the 
theory of random integral equations (cf. [42]). 

THEOREM 14. Suppose that for almost all co E Qi the kernel K(t, r, co) is in 
C([a, b] X [a, b]), and for each t, r E [a, b] the kernel is a random variable. 
Assume also that for almost all co E fi, K(t, r, co) has a resolvent R(t, r, co), 
which means that R(-, r, co) and R(t, -, co) are in L2[a, b] for all r and t, 
respectively, and, moreover, fb

af
b

a\R(t, r, co)|2 dt dr < oo and 

K(t, T,O>)+ R (t, T, co) = fbK(t, & oo)R ({, T, co) di 
Ja 

= [bR(t, I cc)K(ir, U)dt. 
Ja 

Then R is a C([a, b] X [a, b])-valued random variable, and the random 
Fredholm equation 
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cb 

x(t, co) = y(t, <o) + I K(t, r, œ)x(r, co) dr 
J a 

has a unique random solution 

cb 
x(t, w) = y(t, co) — I i? (/, & <o)>>(&>) </£ 

/or eüery ƒ (f, co) w/f/* values in C([a, b]). 

5. Current research and some possible research problems. In this section we 
discuss briefly some current research on random fixed point theorems and 
mention a few problem areas that might be investigated. 

a. It would be of interest to obtain probabilistic analogues of (i) fixed point 
theorems for nonexpansive (d(Txx, Tx2) < d(x{, x2)) and contractive or 
shrinking (d(Tx{, Tx2) < d(x{, x2)) mappings, (ii) the Bohnenblust-Karlin 
Banach space generalization of Kakutani's fixed point theorem (cf. [8]),1 (iii) 
the theorems of Nashed and Wong of Krasnosel'skiï type for nonlinear 
contractions (cf. [47]),2 and (iv) some of the many results presented by 
Petryshyn [50]. Useful probabilistic analogues of the above should find 
widespread applications in probabilisitc analysis. 

b. Let T(co) be a random contraction operator on a Banach space %, and 
let £(co) be its unique fixed point. £(co) is an % -valued random variable; hence 
if its Bochner integral exists we can define the expectation of the random fixed 
point, that is 

ï = S { | ( W ) } = ( B ) f £ ( c o ) ^ . 

Similarly, if T(to) is a uniform random contraction operator on 9C, and if 
T(co)x is Bochner integrable, then we can define the expectation of T(u>)\ that 
is 

Sx = &{T(OJ)X) = (B) fT(u)xdiL. 

Clearly S is a contraction operator on % ; hence it has a unique fixed point, 
say ^/-which we call the fixed point of the expectation of T(œ). A question of 
great interest is the following: Under what conditions on T is £ = v//? 
Consider the random operator T(co) defined for every to G & and x G fX as 
follows: T(cS)[x] = ax + z(w), where a < 1 and z(co) is an LX -valued random 
variable whose expectation exists. In this case it is clear that | = \p; however, 
in general the expectation of a random fixed point does not coincide with the 
fixed point of the deterministic operator which arises as the expectation of the 
given random operator. We refer to Morse [39] for a discussion of this 
problem, and for some numerical results for a nonlinear random integral 
equation. 

It is of interest to determine conditions such that equality obtains, as this 
would shed light on the problem of when the expectation of the solution of a 

*R. Kannan has recently given a probability analogue of Kakutani's theorem. 
2The probabilistic analogue in this case can now be obtained from Theorem 12. 
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random operator equation is equal to the solution of the deterministic 
operator equation which results from averaging. 

c. An area of active research is concerned with the study of fixed point 
theorems for mappings on probabilistic metric spaces. A probabilistic metric 
space (PM-space) is an ordered pair (9C, F), where % is an abstract set of 
elements and F is a mapping of % X 9C into the space of all probability 
distribution functions. For py q E % we denote the distribution function 
F(p, q) by Fpq, and Fpq(g) represents the value of Fpq at £ G R. The 
functions F are assumed to satisfy the following conditions: 

0 ) Fpq&)= 1 for all i > 0, if and only if p = q, 
(2) Fpq(0) = 0, 
(3) F = F 
(4) iî\q(è*)P= 1 and Fq^2) = 1, then Fp^{ + £2) = 1. 
The study of contraction mapping theorems for iW-spaces was initiated by 

Sehgal [55] (cf. also [56], [57]) who obtained analogues of the Banach 
contraction mapping theorem and other fixed point theorems for contraction 
mappings. More recently, Boc§an [7], Cain and Kasriel [12], Istra^escu and 
Roven^a [28], and Istra^escu and Sàcuiu [29], as well as other members of the 
research group at the University of Timi§oara in Roumania have proved a 
number of interesting fixed point theorems for mapping on various classes of 
/W-spaces. Some of these results should be useful in studying the existence of 
solutions of operator equations in PM-spaces. 

d. In the study of approximate solutions of random operator equations it 
would be of use to have theorems of Bonsall-Nadler-type (cf. [9], [45]) for 
random contraction operators. That is, one considers the following question: 
In a Banach space does the convergence (in some sense) of a sequence 
{Tn(co)} of random contraction operators to a random contraction operator 
U(iS) imply the convergence (in some sense) of the associated sequence 
(£„(co)} of random fixed points to the random fixed point, say (p(co), of (7(co)? 

In general, research needs to be done utilizing the additive and multiplica­
tive limit theorems for random operators (cf. [6], [18], [20], [21], [23], [24]) in 
the study of limit theorems for random operators and the limiting behavior of 
their fixed points. Some results along these lines have been obtained by Hans 
[24] using strong laws of large numbers for % -valued random variables. 
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