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0. We consider complexes having the property that the link of each 
point has the homology of S" - 1 with coefficients in Z[l/odd]. Such com­
plexes are called homology n-manifolds at the prime 2. Henceforth, all 
such spaces will be assumed to be 4-connected. 

We state some salient facts. 

LEMMA 1 [a]. Let Kn be a 4-connected Poincaré duality space, v its Spivak 
normal fibration and T(v) the corresponding Thorn spectrum. There is a 
spectrum W(v) and a map p:W(v) -> T(v) such that v is fiherhomotopically 
equivalent to a PL bundle if and only if p admits a section s:T(v) -• iV(y). 

We remind the reader of the construction of W(v) in §1 below, where we 
construct another spectrum ^2 )(v), with an obvious natural map 
/ :TT(V) -+ ^2 )(v) such that p factors as TT(V) -*f #^2)(v) -»p<2> T(v). 

LEMMA 2. If the Poincaré duality space Kn is also a homology manifold at 
the prime 2, then p(2) : ^2)(v) -» T(v) admits a section. 

Lemma 2 is a consequence of straightforward geometric facts concerning 
homology manifolds with coefficients, namely, that "general position 
theorems" of the right sort hold for these objects. 

Now let G be the direct sum of countably many copies of Z2 . 

LEMMA 3. For the map f:iT(v) -> 1V2(y\ n{(f) = 0, if i ^ 5, ±4k. If 
i = 4k^ 8, then n^f) = G. 

Lemma 3 is an abbreviation of Theorem A below. The main conse­
quences are 

THEOREM 1. Let M" be a 4-connected Poincaré duality space which is a 
homology n-manifold at the prime 2. Then Mn has the homotopy type of a PL 
manifold provided a sequence of obstructions in H*k(Mn, G) vanish for all k 
such that 4k < n. 

In reality, these obstructions are to be thought of as the Thorn iso­
morphism images of the obstructions to lifting the section s(2) : T(v) -» #^2)(v) 
to a section s : T(v) -• iV(y\ Thus Theorem 1 is almost obvious by virtue 
of Lemmas 1,2,3. We only remark that if n = 4/c, we do not need to worry 

AMS (MOS) subject classifications (1970). Primary 57C15, 57C25. 

Copyright © American Mathematical Society 1973 

601 



602 N. LEVITT [May 

about the last obstruction in Hn(Mn, G) ; we shall still obtain a section s 
(although not necessarily a lifting of s(2)) since n4k(p) = 0 for k ^ 2 (see 
Theorem A, §1 below). 

A relative version of Theorem 1 seems, in fact, more interesting. 

THEOREM 2. Let Mw, Mn
0 be 3-connected PL manifolds and letf: Mn

0 -> Mn 

be a homotopy equivalence such that the mapping cylinder Jts may be 
triangulated as a homology (n + 1) manifold-with-boundary at the prime 2 
(consistent with the combinatorial structure ofMn

0, M
n). Then f is homotopic 

to a PL equivalence, provided a sequence of obstructions in H*k~l(Mn, G) 
vanish for 4/c — 1 < n. 

The thrust of the theorems is this : We know that if one has an "absolute" 
or "relative" triangulation problem, i.e., finding a PL manifold (or a PL 
equivalence) realizing the homotopy type of a Poincaré complex (or a 
homotopy equivalence between PL manifolds) there are obstructions 
every other dimension, half with Z 2 coefficients, half with Z coefficients. 
If, however, the problem is already "solved" in the world of homology 
manifolds at the prime 2, then we need only consider obstructions every 
fourth dimension with coefficients in the 2-group G. 

We remark that if we replace the prime 2 in the above theorems by the 
world of a set of primes S including 2, then the same theorems hold with 
G replaced by a subgroup having one generator for each prime not in S. 

1. Poincaré duality spaces at the prime 2. A space X will be called a 
Poincaré duality space at the prime 2 (of formal dimension n) if it is a 
finite complex X so that if Rn+k is a regular neighborhood of X in Sn+k, 
k large, then the map dRn+k -• ^Rn+k has a fiber which is the homotopy 
type of a (k — l)-sphere at the prime 2 (i.e., neglecting odd torsion). In 
particular, homology manifolds at the prime 2 are Poincaré duality spaces 
at the prime 2. Hereafter, we use "PD (2)-space" to mean Poincaré duality 
space at the prime 2. 

Let £ denote a sequence of (k — l)-spherical fibrations £fc -> Bk, together 
with maps (f)k:Bk -» Bk+1 covered by spherical-fibration maps il/k:Ç

k © e° 
-» £k+1 , where s° denotes the trivial S°-fibration. 

If X is a PD(2)-space of dimension rc, then a ^-structure on X is a diagram 

dRn + k-^ E(Çk) 
in in 

Rn+k -• Ji^k » Bk 

where Rn+k is a regular neighborhood and the map is a map of spherical 
fibrations at the prime 2. Of course if such a diagram exists, for a certain fe, 
then one exists with k replaced by k + 1, k + 2 , . . . which is completely 
determined by the original one (i.e., we may suspend such a diagram). All 
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these are to be thought of as representing the same ^-structure. We may 
define pairs and bordisms similarly, and we see that we obtain a bordism 
group of such objects by the usual construction. Setting T = T(Ç) = the 
spectrum {T(£k)}, we denote this bordism group by Q*'2. The Pontrjagin-
Thom construction gives a map Q^2 -> n^T. 

Now let Çk be a spherical fibration and f\Mn -> T(£k) where Mn is a 
manifold. Recall that T(Çk) = i ^ u E ( ^ cE{^k) where M denotes mapping 
cylinder, E total space and c unreduced cone. We call ƒ ^-regular at 2 iff 

(1) U = f~l(Jtçk\ V = ƒ _1(c£(£k)) are codimension 0 submanifolds of 
M" with common boundary 

dU = dV= W = f-\E(Çk)) 
with the diagram 

W->E(Çk) 
in in 
u - • ^ k 

as a map of (fe — l)-spherical fibrations at the prime 2 (or if U = 0) . 
A similar definition may readily be made when M has a boundary. 
Let AJ denote the standard /-simplex ; let i^2)(i

k) denote the subcomplex 
of the singular complex of T(Çk) consisting of those singular simplices 
a : Aj — T(Çk) which are ^-regular in 2, as are all of their lower dimensional 
faces. Now if T = T(£) = {T(<f )} then {^2)(£*)} form a spectrum ^2 )(T). 

LEMMA. 7cJ|e
/î̂ 2)(T) = lim7rk+5H#^2)(£k) IS naturally equal to ft*'2; more­

over, the natural map W^iT) -> T induces the Pontrjagin-Thom map 
ni2 -> ̂ r. 

Of course, if we work in the world of all primes, we may make all of the 
above definitions and constructions, simply by ignoring the phrase "at the 
prime 2. ' ' (See [c], [d].) In other words, we could talk about true PD-spaces 
with ^-structures on their normal fibrations, and form bordism groups QJ 
and a spectrum W{T) with nmiT(T) = Qj. In that case iT(T) g ir(2)(T). 
[c] and [d] study the map p:iT(T) -* T. 

We then have the following proposition. (Assume from now on that all 
base spaces are 1-connected.) 

THEOREM A. Consider the diagram 

1 I 
WT) - ir(2)(T) 
[P 1P<2) 
T T 
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where F and F(2) are the fibers of p and p(2) respectively. Then 

nt(F) = HZ\ 

rç(F(2)) = Lf(Z[l/odd]) for i ^ 4. 

Here Lt denotes the Wall L-group of the rings Z and Z[l/odd], respectively. 

The map F -* F2 induces the same map on the L-groups as the ring 
inclusion Z -* Z[l/odd]. 

(2) Lt(Z) -• Lf(Z[l/odd]) is an isomorphism for i =/= 4k; for i = 4fc, it 
is a monomorphism with cokernel G. 

Part (1) is essentially stated, along with a sketch of the proof, by L. Jones 
in [e]. The author also has an independent proof (for a slightly weaker 
result). (See Appendix, §2.) 

Part (2) is based in a direct computation of LHc(Z[l/odd])[/]. 

2. Appendix. We propose here to give some idea of how Theorem A is 
proved or at least of why it should be plausible. We restrict our attention 
to the case when <J is a sequence of PL bundles. 

PROPOSITION. Let Xn be a l-connected PD(2)-space with ^-structure, 
n ^ 5. Let f be the Pontrjagin-Thom map determined by the ^structure on X, 
f:Sn+k-+ T(<f );andletg:Dn+k+1 - T(<f ) be an extension off. (So, in par­
ticular the image of [X] e Qj (^'2 is 0 in nnT(Ç).) Then g may be deformed so 
as to be t-regular at 2 if and only if a certain invariant in L„(Z[l/odd]) 
vanishes. 

PROOF. We may assume that on a collar Sn+k x I of Sn+k in Dn+k + *, g is 
just ƒ o (projection). Since £k has a PL structure, we may deform ƒ so as to 
be PL transverse regular, i.e., f~1(Bk) is an n-manifold M sitting inside 
Rn+k = regular neighborhood X. It turns out that there is a bundle map 
v\M) -• rj*Çk where rj :X -> Bk is part of the ^-structure of X. Moreover, 
M bounds W (by putting all of g into PL transverse position). There is a 
bundle map vk(W) -• <*. 

Now assume Wlives in the smaller copy of Dn+k+ x got by removing the 
open collar on Sn+k, and that M lives on the "inside" copy of Rn+k. If 
M g X is a homotopy equivalence at 2, then it is easy to see that the pair 
(R x ƒ u W, R) is a PD(2)-pair with ^-structure (here R is essentially X). 
So the problem is to make M §i X a homotopy equivalence at 2 by doing 
surgery on the bundle map vk(M) -• rj*Çk (which covers a degree-one-map 
of PD(2)-spaces). We run into a well-defined obstruction in L„(Z[1/odd]), 
which vanishes when the surgery can be completed [i]. Q.E.D. 

This lemma is the key step in the author's proof of Theorem A. In fact, 
the lemma by itself provides most of what is needed for a proof of Theorem 
2 (which does not really need Theorem A in full generality). 
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