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0. We consider complexes having the property that the link of each
point has the homology of S"~! with coefficients in Z[1/odd]. Such com-
plexes are called homology n-manifolds at the prime 2. Henceforth, all
such spaces will be assumed to be 4-connected.

We state some salient facts.

LeEmMA 1[a]. Let K" be a 4-connected Poincaré duality space, v its Spivak
normal fibration and T(v) the corresponding Thom spectrum. There is a
spectrum W (v) and a map p:# (v) —» T(v) such that v is fiberhomotopically
equivalent to a PL bundle if and only if p admits a section s:T(v) - #'(v).

We remind the reader of the construction of #7(v) in §1 below, where we
construct another spectrum ¥(,(v), with an obvious natural map
f:#°(v) > #(»(v) such that p factors as #'(v) =7 #(,)(v) >7 T(v).

LeMMA 2. If the Poincaré duality space K" is also a homology manifold at
the prime 2, then p): W ,)(v) = T(v) admits a section.

Lemma 2 is a consequence of straightforward geometric facts concerning
homology manifolds with coefficients, namely, that ‘“‘general position
theorems” of the right sort hold for these objects.

Now let G be the direct sum of countably many copies of Z,.

LeEMMA 3. For the map W (v) = #5;v), m(f) =0, if i = 5, +4k. If
i =4k = 8, then m(f) = G.

Lemma 3 is an abbreviation of Theorem A below. The main conse-
quences are

THEOREM 1. Let M" be a 4-connected Poincaré duality space which is a
homology n-manifold at the prime 2. Then M" has the homotopy type of a PL
manifold provided a sequence of obstructions in H*(M", G) vanish for all k
such that 4k < n.

In reality, these obstructions are to be thought of as the Thom iso-
morphismimages of the obstructions to lifting the section s, : T(v) = #(2)(v)
to a section s: T(v) = # (v). Thus Theorem 1 is almost obvious by virtue
of Lemmas 1, 2, 3. We only remark that if n = 4k, we do not need to worry

AMS (MOS) subject classifications (1970). Primary 57C15, 57C25.

Copyright © American Mathematical Society 1973

601



602 N. LEVITT [May

about the last obstruction in H*(M", G); we shall still obtain a section s
(although not necessarily a lifting of s,)) since 74,(p) = O for k = 2 (see
Theorem A, §1 below).

A relative version of Theorem 1 seems, in fact, more interesting.

THEOREM 2. Let M", M be 3-connected PL manifolds and let f: Mg — M"
be a homotopy equivalence such that the mapping cylinder ./, may be
triangulated as a homology (n + 1) manifold-with-boundary at the prime 2
(consistent with the combinatorial structure of My, M"). Then f is homotopic
to a PL equivalence, provided a sequence of obstructions in H**~(M", G)
vanish for 4k — 1 < n.

The thrust of the theorems is this : We know that if one has an ““absolute™
or “relative” triangulation problem, i.e., finding a PL manifold (or a PL
equivalence) realizing the homotopy type of a Poincaré complex (or a
homotopy equivalence between PL manifolds) there are obstructions
every other dimension, half with Z, coefficients, half with Z coefficients.
If, however, the problem is already “solved” in the world of homology
manifolds at the prime 2, then we need only consider obstructions every
fourth dimension with coefficients in the 2-group G.

We remark that if we replace the prime 2 in the above theorems by the
world of a set of primes S including 2, then the same theorems hold with
G replaced by a subgroup having one generator for each prime not in S.

1. Poincaré duality spaces at the prime 2. A space X will be called a
Poincaré duality space at the prime 2 (of formal dimension n) if it is a
finite complex X so that if R"** is a regular neighborhood of X in S"**,
k large, then the map OR"** — SR"** has a fiber which is the homotopy
type of a (k — 1)-sphere at the prime 2 (i.e., neglecting odd torsion). In
particular, homology manifolds at the prime 2 are Poincaré duality spaces
at the prime 2. Hereafter, we use “PD,)-space” to mean Poincaré duality
space at the prime 2.

Let ¢ denote a sequence of (k — 1)-spherical fibrations & — By, together
with maps ¢, : B, — B, , covered by spherical-fibration maps y,: &* @ ¢&°
— &1 where ¢° denotes the trivial S°-fibration.

If X isa PD,)-space of dimension n, then a ¢-structure on X is a diagram

aRn+k N E(fk)
In in

where R"** is a regular neighborhood and the map is a map of spherical
fibrations at the prime 2. Of course if such a diagram exists, for a certain k,
then one exists with k replaced by k + 1,k + 2,... which is completely
determined by the original one (i.e., we may suspend such a diagram). All
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these are to be thought of as representing the same &-structure. We may
define pairs and bordisms similarly, and we see that we obtain a bordism
group of such objects by the usual construction. Setting T = T(£) = the
spectrum { T(¢%)}, we denote this bordism group by QI-%. The Pontrjagin-
Thom construction gives a map QL2 - =, T.

Now let & be a spherical fibration and f:M" — T(&¥) where M" is a
manifold. Recall that T(£¥) = M 4L gy cE(EX) where # denotes mapping
cylinder, E total space and ¢ unreduced cone. We call f t-regular at 2 iff

(1) U = f~Y(Ma), V = f~(cE(£") are codimension 0 submanifolds of
M" with common boundary

U =0V =W = f"YEY)
with the diagram

W — E(&")
In In
U- ./”{k

as a map of (k — 1)-spherical fibrations at the prime 2 (or if U = ).
A similar definition may readily be made when M has a boundary.
Let A/ denote the standard j-simplex ; let #(,,(¢¥) denote the subcomplex
of the singular complex of T(£) consisting of those singular simplices
o : AN — T(£*) which are t-regular in 2, as are all of their lower dimensional
faces. Now if T = T(&) = {T(£")} then {#(,)(&")} form a spectrum #(,(T).

LEMMA. 7, #,)(T) = lim .  #(5)(EY) is naturally equal to QL%; more-
over, the natural map W,(T)— T induces the Pontrjagin-Thom map
Q2 -n,T

Of course, if we work in the world of all primes, we may make all of the
above definitions and constructions, simply by ignoring the phrase “at the
prime 2.” (See [c], [d].) In other words, we could talk about true PD-spaces
with é-structures on their normal fibrations, and form bordism groups QF
and a spectrum #(T) with 7, #"(T) = QL. In that case #(T) & #(,(T).
[c] and [d] study the map p:#(T) > T.

We then have the following proposition. (Assume from now on that all
base spaces are 1-connected.)

THEOREM A. Consider the diagram
F

F,

W(T) = #2T)

p lP(z)
T T
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where F and F,, are the fibers of p and p(,, respectively. Then
m(F) = L(2),
m(F(3)) = L(Z[1/odd]) fori = 4.
Here L, denotes the Wall L-group of the rings Z and Z[1/odd], respectively.

M

The map F — F, induces the same map on the L-groups as the ring
inclusion Z — Z[1/odd].

(2) L{Z) - L(Z[1/0dd)) is an isomorphism for i #+ 4k; for i = 4k, it
is a monomorphism with cokernel G.

Part (1) is essentially stated, along with a sketch of the proof, by L. Jones
in [e]. The author also has an independent proof (for a slightly weaker
result). (See Appendix, §2.)

Part (2) is based in a direct computation of L,(Z[1/odd])[f].

2. Appendix. We propose here to give some idea of how Theorem A is
proved or at least of why it should be plausible. We restrict our attention
to the case when £ is a sequence of PL bundles.

PROPOSITION. Let X" be a 1-connected PDyy-space with &-structure,
n = 5. Let f be the Pontrjagin-Thom map determined by the &-structure on X,
f:8"k - T(£%); and let g:D"*** ! — T(£*) be an extension of f. (So, in par-
ticular the image of [X]1€ QT®2 is 0 in n, T(£).) Then g may be deformed so

as to be t-regular at 2 if and only if a certain invariant in L(Z[1/odd)])
vanishes.

PrOOF. We may assume that on a collar S"** x T of S"**in D"***1 gis
just f o (projection). Since & has a PL structure, we may deform f so as to
be PL transverse regular, i.e., f ~!(B,) is an n-manifold M sitting inside
R"** = regular neighborhood X. It turns out that there is a bundle map
V(M) — n*E* where n: X — B, is part of the ¢-structure of X. Moreover,
M bounds W (by putting all of g into PL transverse position). There is a
bundle map v{(W) — &,

Now assume W lives in the smaller copy of D"***1 got by removing the
open collar on $"** and that M lives on the “inside” copy of R"*¥. If
M < X is a homotopy equivalence at 2, then it is easy to see that the pair
(R x Iu W, R) is a PD,-pair with £-structure (here R is essentially X).
So the problem is to make M £ X a homotopy equivalence at 2 by doing
surgery on the bundle map v{(M) — n*&* (which covers a degree-one-map
of PD,)-spaces). We run into a well-defined obstruction in L,(Z[1/odd]),
which vanishes when the surgery can be completed [i]. Q.E.D.

This lemma is the key step in the author’s proof of Theorem A. In fact,
the lemma by itself provides most of what is needed for a proof of Theorem
2 (which does not really need Theorem A in full generality).
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