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If n is a finite group, define the modified Whitehead group WH'(7i) to be 
the quotient of Im(K1(Z7ü) -> Kx(Qn)) (the group of reduced norms of 
invertible matrices over Zn) by the classes of ±g, g e n. Using classes in 
this, we have a concept of 'near-simple' homotopy equivalence, and a 
family of surgery obstruction groups, which we denote in this paper by 
Ln(n). 

Roughly speaking, L0(n) (resp. L2(n)) is the Grothendieck group of 
nonsingular hermitian (resp. skew hermitian) forms over the group ring 
Zn, with involution defined by g ^w(g)g~1 (gen) for some homomor-
phism w:7c->{±l};L1(7c) (resp. L3(n)) is the commutator quotient group 
of the (stable) unitary group of such forms. The precise definition is given 
in [9] or (better) [10]. The 'orientable' case n+ is when w is trivial. 

The object of this note is to announce the following calculations. For 
any abelian group G, we write 2G and G2 for the kernel and cokernel of 
2 :G->G. 

(i) n of odd order. Write R(n) for the complex representation ring of 
n, x for the complex conjugate of x. 

L2fc + 1(n) = 0. The signature map on L2k(n) has kernel 0 (k even), Z2 

(k odd), and image {4(x + (— l)kx):x e R(n)}. 
(ii) n abelian. Write N for the order of n, r for the 2-rank, s for the number 

of direct summands of order 2. 
Special case. For some x e n,x2 = landw(x) = —\.Ln(n) = Ln(Z2~) © E, 

where E is an elementary 2-group of rank (N/2 — N/2r — r + 1). Ln(Z~^) = 
0 (n odd) = Z2 (n even). 

General case. There is no such x. The image of the signature map on 
Ln(n) is as in (i)for n even, n orientable, and 0 otherwise. The kernel has 
exponent 2 and rank 

2' - l - r - G ) n = 0,1(4), 

1, n = 2(4), 

2r — 1, n = 3(4) orientable, 

exponent 2 or 4 and order 2{2r + 2r _1 ~X) in the other case. 
(iii) n dihedral of order 2p (p an odd prime). Let Kp denote the maximal 
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real subfield of the field of pth roots of unity, T its class group. It is known 
[5] that T ^ K0(n). Let (/> denote the index in Z* of the subgroup generated 
by 2 and — 1. Let E be the group (of signatures) having \{p — 1) com­
ponents G Z, each divisible by 4, with sum divisible by 8. 

Ln(n
+) s Ln(Z+) © Ln(p) and Ln(7r") ^ Ln(Z~2) © Ln+2{p\ where 

L0(p) = r 2 0 l , L^p) ^ 2 r , L2(p) £ 0Z2 , L3(p) /zas order 2<t, + p~1 

and exponent 2 or 4 according as p = ±1 (4). 
(iv) 71 nonabelian of order 8. We have the dihedral group D and the 

quaternion group Q. Distinguish the nonorientable versions of D by 
writing De if for x of order 4, w(x) = 1 and D~ if w(x) = — 1. In the table, 
Z denotes a signature with values divisible by 8. 

D+ D~ De Q+ Q-

L0 5Z Z © Z2 Z2 4Z Z2 © Z2 

Li 0 0 Z 2 2Z2 0 

L2 Z 2 Z 2 Z®Z2 Z © Z2 Z 2 

L3 4Z2 Z 2 0 4Z2 Z 2 

The precise relation of these to the usual L groups depends on Kx(Zn). 
If K1(Zn) -> ^1(Q7c) is injective, or has kernel of odd order, then Ln(n) = 
Ls

n(n). For n abelian, the kernel (usually then denoted SK1(Zn)) is known 
to have odd order if the Sylow 2-subgroup of n is cyclic or a four group, 
and to be trivial if n is an elementary 2-group, or the direct sum of a cyclic 
2-group with a group of order 2 [2, p. 624]. Consider, on the other hand, 
cases when K^Zn) is finite: this holds [2] if whenever g, hen generate 
the same cyclic subgroup, h is conjugate t o g or to g _ 1 . This is true in 
particular if n is abelian of exponent 2, 4 or 6 or nonabelian of order 6, 8 
or 21 and in these cases we can easily check that Wh'(7r) = 0, so Ln(n) = 

A number of these groups had been computed previously. The discussion 
of known results in [9, §13A and §17E] should be augmented (at least) 
by the references [6] and [7]. Bak has recently announced (see [1] for a 
preliminary version) that Ls

n(iz) = Lh
n(n) = 0 for n odd and n abelian of 

odd order. Also Bass has [3], [4] detailed results on L%(ri) and L\(n) for n 
abelian, and Ll(n) for n of exponent 2, obtained by very different methods. 

Our results, particularly (iii), give explicit counterexamples to any over-
naïve ideas about the structure of the Ln(n\ but nevertheless a fair regu­
larity is apparent, particularly for L2. 

I now describe the outline of the proof. Let S be a semisimple algebra 
over Q (e.g., Qn\ R a Z-order in S (e.g., Zn), R its profinite completion, 
S = R <S> Q, T = S ® R. One first shows, in the context of the L-theory of 
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rings [10], that there is an exact sequence 

• • • - Lf(R) - Lf(R) 0 Lf(S) - Lf(S) - L?_ ^K) - • • • 

where the X signifies that determinants are all to be evaluated in K^S). 
The construction of the boundary map Lf(S) -• L*(R) and exactness here 
use linking forms; the rest of the proof follows the usual pattern of algebraic 
K-theory. Details will appear in [11]. 

Next, we compute Lf (S). The map 

Lf(S) - L?(S) © Lf(T) 

is injective ('Hasse principle'): its cokernel CLt(S) is a sum of terms from 
simple components of S. For a component with centre K, the term is 
nonzero only if the involution is trivial on K, and is then given (possibly 
with dimensions shifted by 2) by Z2 (i = 0), C2 (i = 1), 2C (i = 2), 
0 (i = 3), where C is the idèle class group of K. For cases (i), (ii), (iv) we 
only need to consider K = Q, but, for (iii), K = K^. 

Now consider R = YIP&P- Let Rp be the reduction of Ap modulo its 
radical. We say that Rp has good reduction if 

The former kernel is always finite; the latter a profinite p-group. Using 
modular representation theory, one sees that, for all p, n, Zpn has good 
reduction. It follows for p odd, using a lifting theorem modulo the radical, 
that L*(Rp) = LSi(Rp), which is easy to compute. 

We have an exact sequence 

• •. - Lf(R) -> Lf(R) © Lf(T) - CL,(S) -> Lf_ ,(R) 

and now verify, in each of the cases considered, that 

Upo6àLf(Rp) © Tors Lf (T) - CL,(S) 

is injective, and obtain the cokernel (which is finite). Indeed, the calcula­
tions here for (i) and the general case of (ii) both reduce to the case for R = Z. 
It thus remains to compute Lf(R2). 

Now in the notation of [10], 

Lf{Ê2n) ^ Lf (Z^r) 

is a sum of copies of Z2, one for each irreducible 2-modular representation 
of 71 of type SPOT. We note in passing that these groups are easy to detect: 
for i even, by the Kervaire-Arf invariant, and for i odd, by Lee's semi-
characteristics [8]. But only in (iii) does this yield anything essentially new. 
One can pass from LK to Lx by an exact sequence (similar to one of Rothen-
berg) 
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• Lf (Z2n) -• Lf (Z2n) -+ Hi(Z2 ; V2) -> • • • 

where V2 is the image of Nrd:Kl(Ê2n) -• K^(Q2n), and indeed of (Z2n)x. 
The remainder—and it is the hardest part—of the calculation involves 

computing groups of units of Z2%. We need these in sufficient detail to 
calculate homomorphisms, as well as the terms in these sequences. I give 
two sample results of this kind. 

7i abelian, orientable case. {±g'.gen} maps onto H1(Z2;(Z2n)x). Next, 
suppose n an elementary abelian 2-group with dual p. Each % e p gives a 
map Q2n -• Q2; the sum of these is an isomorphism. Now {a(x):xe p} 
comes from (Z2n)x if and only if each a(x) e Z2 and, for each subgroup 
Hofp, 

n{fl(z) :zeH} = lmod |H | . 

For 7i of odd order, Z2n is an (unramified) maximal order; for n of order 
2p we can split Z2n into 2-blocks; the first one is Z2\_Z2\ and the rest have 
trivial defect group, hence are unramified. 

One useful device to shorten some calculations is to use retractions. 
For example in the orientable case, Ln(n) = L„(l) © Ln(n). For n of odd 
order, it is easier to follow the above chain of exact sequences for L, 
where nearly all the groups vanish. 

For further calculations, one will need explicit invariants to detect 
elements in these groups. In many cases, the torsion subgroup of L*(R) 
maps injectively to L*(k2\ and there is some hope of finding invariants, 
though H°(Z2;V2) makes a numerically large and somewhat awkward 
contribution. For n orientable abelian the torsion in L0, however, is an­
nihilated by all invariants we know. 
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