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1. Introduction. Let ^f: C°°(M)-> C°°(M) be a formally selfadjoint 
differential operator of order 2 on the Riemannian manifold M. i f is said 
to be subelliptic of order e (0 < e < 1) at x e M if there exist a neighbor­
hood V of x and a constant c > 0 such that for all u e CQ(V), 

(1) \M\î^c(\(&u9u)\ + \\u\\2)9 

where ||u|| is the L2 norm and ||w||g is the Sobolev norm of order s. According 
to a fundamental theorem of Kohn and Nirenberg [3], subelliptic operators 
are hypoelliptic and satisfy the a priori estimates 

(2) ||n||s
2

+28 S CS(||JS?M||S
2 + ||u||2), ueC%(V)9 

for each 5 ^ 0. 
In this note we shall display an operator on a Euclidean space which is 

subelliptic of order \ at each point and construct an explicit integral 
operator which inverts it. 

2. Construction of the operator. Let N be the nilpotent Lie group whose 
underlying manifold is Cn x R with coordinates ( z l 5 . . . , zn, t) = (z, t) and 
whose group law is 

(z, t)(z', t') = (z + z', t + t' + 2 Im z • z') 

where z • z' = YA zfj- Letting z = x + ry, then, x l 5 . . . , x„, y l 5 . . . , yn, t 
are real coordinates on N. We set 

S „ 3 3 ö 5 
x ' = a^ + 2 y ' a f y^ = ^ - 2 x ^ T = 3? 
a 1 / 3 5 \ 5 1 / 3 e 

3zj 2 \3xj dy,-/ ' 3zj 2 \dxj dy^ 

Zj = i(Xj - ,T,), Zj = i(X;. + iYj). 

The following proposition is easily verified. 
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LEMMA 1. Xl9..., Xn, Yu . . . , Yn9 T are a basis for the Lie algebra ofN. 

We impose the left-invariant metric on N which makes this basis ortho-
normal at each point and note that the induced volume element is Lebesgue 
measure, which we denote by d(z, t). 

THEOREM 1. The operator 

^ = L s2 , l 2 a 2 

-1^1 ^ + ^ z i i 7 - z 
dzjdzj *~Ji dt2 ' 'dt\"jdzj J dzj 

is left-invariant and is subelliptic of order \ at each xe N. 

PROOF. One easily sees that Se = -^YA(ZJZJ + ZJZJ), which by 
Lemma 1 implies left-invariance. Moreover, since Z ; is the formal adjoint 
of — Z7-, we have 

(3) {&u, u) = \ t (ii^n2 + wzju\\2)> u G co(^y 
^ 1 

We invoke the following special case of a theorem of Kohn [2] and 
Radkevic [5] : 

LEMMA 2. Let V be a compact set in a Riemannian manifold M, and let 
L l 5 . . . ,LN be complex vector fields on M whose linear span is closed under 
complex conjugation and such that {Lj}1^ u {[Lj9 Lk]}]jk=1 spans the tangent 
space at each xeV. Then there exists c > 0 such that for all u e CQ(V), 

I M I ? / 2 ^ c ( £ | | L j W | | 2 + |M| 2 1. 
\ 1 / 

The hypotheses of Lemma 2 are satisfied if we take the L/s to be 
Z l 5 . . . , Zn , Z l 5 . . . , Zn , since [Zj5 Z7] = 2iT. Hence (3) implies (1), and the 
theorem is proved. 

REMARK. N is the nilpotent part in the Iwasawa decomposition of the 
holomorphic automorphism group of the Siegel domain 

C e C " + 1 : t i g 2 - I m C n + 1 < 0 } , 

and it may be identified with the boundary of the domain via the cor­
respondence (z, t) «-> (zl5 ...9zn9t 4- iYji \zj\2)- Under this identification, 
— 2]T" ZjZj is just the "tangential complex Laplacian" [Jb of J. J. Kohn 
(cf. [1]), and hence i f = i(Db + Db)- Also, note that when n = 1, the 
operator Z = (d/öz) — iz(d/dt) is the "unsolvable" operator of H. Lewy 
[4]. 

3. Construction of the fundamental solution. Following Stein [6], we 
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introduce the group {ôr : 0 < r < oo} of dilations on N defined by ôr(z, t) = 
(rz, r2t), which satisfy the distributive law 5r((z, t)(z', t')) = {ôr(z, t))(ör(z\ t')\ 
and we define the norm function p(z, t) = (|z|4 + £2)1/4 (where \z\2 = z • z), 
which satisfies p(ôr(z, t)) — rp(z, t). By analogy with the fact that |x|2~m is 
(a constant multiple of) the fundamental solution of the Laplacian on Rm 

with source at 0, we now prove 

THEOREM 2. cnp~2n is a fundamental solution for 5£ with source at 0, 
where 

c„ = n(n + 2) f |z|2(p(z,t)4 + l ) - ( n + 4) /2d(z,t) 

7rc o£/zer words, for any u e CQ(N), {<£U, cnp
 2n) = u{0). 

PROOF. Given s > 0, let pE = (p4 + e4)1/4; a simple calculation then 
shows that 

(^p;2n)(z,t) = s-2n-2cj)(ö1/E(z,t)) 
where 

<t>(z9t) = n(n + 2)|z|2(p(z,04 + l)" (" + 4)/2. 

From the fact that s~2n~2$N 4>°^i/e — $N4> = cn1 < °° a n d the fact that 
^i/8(J0 ~* N as s -» 0 for any neighborhood F of 0, it now follows easily 
that for any u e Q? (N), 

(£?u,cnp~2n) = lim {£>u,cnp;2n) = lim (u,cn<£p~2n) = w(0), 
e->0 £->0 

and the theorem is proved. 
Since JSf is left-invariant, we deduce immediately 

COROLLARY 1. Iff e C£(N\ then the function u =f* (cnp~2n) is a solution 
of <£u = ƒ, where * denotes convolution on the group N. 

The hypothesis on/can be relaxed considerably, of course. For example, 
the convolution integral will converge absolutely provided that 
/ e L n + 1 - £ n L n + 1 + e f o r s o m e e > 0. 

4. Applications. We shall now prove a precise regularity theorem for 
«3? by means of the theory of singular integrals on nilpotent groups (cf. [6] 
and the references given there). A singular integral kernel on Nis a function 
of the form Qp~2n~2 where Q is a smooth function on N — {0} satisfying 
O(<5r(z,0) = fl(z,t) for all r > 0 and Sa<p(z,t)<An(z, t)d(z, t) = 0 for all 
0 < a < ,4 < oo. If \\J is a singular integral kernel, the operator ƒ-^ ƒ * ij/, 
the convolution integral being defined in a suitable principal-value sense, 
enjoys the same basic properties as Calderon-Zygmund operators on Rm: 
it is bounded on Lp, 1 < p < oo, and is weak type (1,1). 
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THEOREM 3. Let u = ƒ* (cnp~2n) as in Corollary 1. Then the operators 
taking f to XjXku, YjYku, XjYku, YjXku (ƒ, k = 1 , . . . , n) and Tu (but not 
XjTu, YjTu, or T2u) are bounded on Lp,l < p < oo, and are weak type 

PROOF. Computations similar to those in the proof of Theorem 2 show 
that the distribution derivatives Tp~2n, XjYkp~2n

9YjXkp~2n
9 and, for 

j =f= k,XjXkp~2n and YjYkp~2n are singular integral kernels, and the 
distribution derivatives X2p~2n and Y2p~2n are singular integral kernels 
plus multiples of the Dirac ^-function at 0. The theorem now follows 
immediately from the definition of u and the left-invariance of Xj9 Yj9 and 
T. 

By the same reasoning, of course, we can estimate higher derivatives of 
u in terms of appropriate derivatives of/by shifting some of the derivatives 
onto ƒ in the convolution defining u. This yields a very precise interpreta­
tion of the estimates (2) as well as their extension to LP, p =£ 2 : Passage 
from ƒ to u gains one derivative in the T direction and two derivatives in 
all directions orthogonal to T. 

We hope to elaborate on these ideas in a future publication. 
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