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1. Introduction. Let ¥:C®(M)— C*(M) be a formally selfadjoint
differential operator of order 2 on the Riemannian manifold M. % is said
to be subelliptic of order ¢ (0 < ¢ < 1) at x e M if there exist a neighbor-
hood V of x and a constant ¢ > 0 such that for all ue C& (V),

(1) lull? < c((Lu, )l + llull?),

where |lu]l is the > norm and ||ul|, is the Sobolev norm of order ¢. According
to afundamental theorem of Kohn and Nirenberg [3], subelliptic operators
are hypoelliptic and satisfy the a priori estimates

(2) ”u”sz-*— 2¢e = Cs(llgu”sz + ”ullz)’ ue C?)O(V)’

for each s = 0.
In this note we shall display an operator on a Euclidean space which is

subelliptic of order 3 at each point and construct an explicit integral
operator which inverts it.

2. Construction of the operator. Let N be the nilpotent Lie group whose
underlying manifold is C"* x R with coordinates (z,, ..., z,,t) = (z,t) and
whose group law is

(zt)z, )=+ 2Z,t+t +2Imz-Z)

where z -z’ =.Z'{ z;z;. Letting z = x + iy, then, Xy, ..., X, Vise-ns Vol
are real coordinates on N. We set

0 0 0 0 0
X =% 12p.9 _9 5.9 _9
I o T e i=a, %o TTw
0 1{0 .0 0 1[0 4 0
L B g _ |2 ;&
dz; 2\ox; 0y’ 0z; 2\0x; 0y’

The following proposition is easily verified.
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LemMma 1. X4,..., X,, Yy,..., Y,, T are a basis for the Lie algebra of N.

We impose the left-invariant metric on N which makes this basis ortho-
normal at each point and note that the induced volume element is Lebesgue
measure, which we denote by d(z, t).

THEOREM 1. The operator

5 @ ol o 0
27 P — 5.
‘= ;I: o207, aﬂ“at(zlazj Zfazj)]

is left-invariant and is subelliptic of order 1 at each x € N.

PROOF. One easily sees that £ = lzl (Z,Z; + Z,Z}), which by
Lemma I implies left-invariance. Moreover, since Z; is the formal adjoint
of —Z;, we have

3) (L) = 3 SUZul +1ZulP),  ue C(N)

We invoke the following special case of a theorem of Kohn [2] and
Radkevic [5]:

LEMMA 2. Let V be a compact set in a Riemannian manifold M, and let
Ly, ..., Ly be complex vector fields on M whose linear span is closed under
complex conjugation and such that {L;}Y U {[L;, L,]}Y, = spans the tangent
space at each x € V. Then there exists ¢ > 0 such that for all ue Cg(V),

N
lullf)y < ¢ (ZIIL,-MII2 + Ilullz)-
1

The hypotheses of Lemma 2 are satisfied if we take the L;’s to be
Zy,...,Z,,Zy,...,Z,,since [Z;,Z;] = 2iT. Hence (3) implies (1), and the
theorem is proved.

REMARK. N is the nilpotent part in the Iwasawa decomposition of the
holomorphic automorphism group of the Siegel domain

fec e — mt, <o},

and it may be identified with the boundary of the domain via the cor-
respondence (z,t) <> (zy,...,z,,¢ + i )7 |z]*). Under this identification,
—23"% Z,Z; is just the “tangential complex Laplacian™ ], of J. J. Kohn
(cf. [1]), and hence ¥ = L, + O,). Also, note that when n = 1, the
operator Z = (0/0zZ) — iz(0/0t) is the “‘unsolvable” operator of H. Lewy
[4].

3. Construction of the fundamental solution. Following Stein [6], we
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introduce the group {,: 0 < r < oo} of dilations on N defined by 4,(z, t) =
(rz, r*t), whichsatisfy the distributive law 6, ((z, t)(z', t')) = (6, (z, 1))(, (', t')),
and we define the norm function p(z, t) = (|z|* + t?)** (where |z]* = z- 2),
which satisfies p(d,(z, t)) = rp(z, t). By analogy with the fact that |x|> ™™ is
(a constant multiple of) the fundamental solution of the Laplacian on R™
with source at 0, we now prove

THEOREM 2. c,p~ %"

where

is a fundamental solution for & with source at 0,

c, = I:n(n + 2)f 1z12(p(z, )* + 1)~ @*D/2 4(z, t):|_1.

In other words, for any ue C?(N), (Lu, c,p~*") = u(0).

PrOOF. Given ¢ > 0, let p, = (p* + &¢*)'/*; a simple calculation then
shows that

(Lp; ")z 1) = 67" 2P(8 1,2, 1)
$(z,1) = n(n + 2)lz1(p(z, t)* + 1)~ 12,

From the fact that ¢~ 2""2[y o0, = [y¢ = ¢, ' < o0 and the fact that
81,.(¥) = N as ¢ — 0 for any neighborhood V of 0, it now follows easily
that for any u e Cy(N),

(Lu, c,p™ ") = lim (Lu, c,p; ") = lim (u, ¢,Zp, ") = u(0),

where

and the theorem is proved.
Since & is left-invariant, we deduce immediately

COROLLARY 1. Iffe CZ(N), then the function u = f* (c,p~ *") is a solution
of Lu = f, where = denotes convolution on the group N.

The hypothesis on f'can be relaxed considerably, of course. For example,
the convolution integral will converge absolutely provided that
felr* 7t~ [ 1*E for some ¢ > 0.

4. Applications. We shall now prove a precise regularity theorem for
Z by means of the theory of singular integrals on nilpotent groups (cf. [6]
and the references given there). A singular integral kernel on N is a function
of the form Qp~ 2"~ 2 where Q is a smooth function on N — {0} satisfying
Q(6,(z, 1) = Q(z,0) for all r > 0 and [,<, <4 Q2 ) d(z,1) = 0 for all
0 <a< A < . Ifyis a singular integral kernel, the operator f — [+,
the convolution integral being defined in a suitable principal-value sense,
enjoys the same basic properties as Calderon-Zygmund operators on R™:
it is bounded on I, 1 < p < 00, and is weak type (1, 1).
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THEOREM 3. Let u = f* (c,p~*") as in Corollary 1. Then the operators
taking f to X;Xyu, Y;Yyu, X;Yu, Y, Xu (,k = 1,...,n) and Tu (but not
X;Tu, Y;Tu, or T?u) are bounded on L?,1 < p < o, and are weak type

a1, 1).

PRrOOF. Computations similar to those in the proof of Theorem 2 show
that the distribution derivatives Tp~?", X,;Y,p~2", Y;X,p~ ", and, for
j# k X;X,p~? and Y,;Y,p~?" are singular integral kernels, and the
distribution derivatives X?p~2" and Y/p~?" are singular integral kernels
plus multiples of the Dirac -function at 0. The theorem now follows
immediately from the definition of u and the left-invariance of X, Y;, and
T.

By the same reasoning, of course, we can estimate higher derivatives of
u in terms of appropriate derivatives of f by shifting some of the derivatives
onto fin the convolution defining u. This yields a very precise interpreta-
tion of the estimates (2) as well as their extension to L?, p # 2: Passage
from f'to u gains one derivative in the T direction and two derivatives in
all directions orthogonal to T.

We hope to elaborate on these ideas in a future publication.
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