FINITELY GENERATED SUBMODULES OF DIFFERENTIABLE FUNCTIONS. II

BY B. ROTH

Communicated by François Treves, July 24, 1972

1. **Introduction.** Let $\mathscr{E}(\Omega)$ denote the space of real-valued infinitely differentiable functions on an open set Ω in \mathscr{R}^n equipped with the topology of uniform convergence of all derivatives on all compact subsets of Ω . Throughout we assume that Ω is connected.

Let $[\mathscr{E}(\Omega)]^p$ denote the Cartesian product of $\mathscr{E}(\Omega)$ with itself *p*-times equipped with the product topology. Then $[\mathscr{E}(\Omega)]^p$ is a Frechet space and a $\mathscr{E}(\Omega)$ -module. In [3], the finitely generated submodules of $[\mathscr{E}^m(\Omega)]^p$ which are closed in $[\mathscr{E}^m(\Omega)]^p$ are characterized for $m < \infty$ and we are here concerned with the same problem for $m = \infty$.

2. The main result. Consider the finitely generated submodule $M = \{g_1f_1 + \cdots + g_qf_q : g_1, \ldots, g_q \in \mathscr{E}(\Omega)\}$ of $[\mathscr{E}(\Omega)]^p$ where $f_j = (f_{1j}, \ldots, f_{pj}) \in [\mathscr{E}(\Omega)]^p$ for $1 \leq j \leq q$. Let F be the $p \times q$ matrix $(f_{ij})_{1 \leq i \leq p; 1 \leq j \leq q}$. Then $F : [\mathscr{E}(\Omega)]^q \to [\mathscr{E}(\Omega)]^p$ and $\operatorname{im}(F) = M$. In [2, pp. 21-25], Malgrange shows that $M = \operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^p$ if each f_{ij} is real analytic on Ω . A zero of a function is said to be a zero of finite order if some derivative of the function fails to vanish there. Our main result is

THEOREM 1. Suppose $F = (f_{ij})_{1 \le i \le p; 1 \le j \le q}$, $f_{ij} \in \mathscr{E}(\Omega)$, and let $r = \max\{\operatorname{rank}(F(x)): x \in \Omega\}$. For $\Omega \subset \mathscr{R}^n$, if the finitely generated submodule $\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^p$, then for every $x \in \Omega$ with $\operatorname{rank}(F(x)) < r$ there exists an $r \times r$ submatrix A of F such that x is a zero of finite order of $\det(A)$. For $\Omega \subset \mathscr{R}^1$, the converse also holds.

For $\Omega \subset \mathcal{R}^n$, n > 1, the converse fails to hold [1, p. 89]. For $\Omega \subset \mathcal{R}^1$, the fact that the zeros of finite order condition is sufficient follows from Malgrange's characterization of the closure of a submodule of differentiable functions [1, Corollary 1.7, p. 25]. For $\Omega \subset \mathcal{R}^n$, the necessity of the zeros of finite order condition can be demonstrated in the following manner. Assuming that $\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^p$, we have by the closed range theorem for Frechet spaces that $\operatorname{im}(F') = [\ker(F)]^{\perp}$ where $F': [\mathscr{E}'(\Omega)]^p \to [\mathscr{E}'(\Omega)]^q$ is the transpose of F. Assuming that the set Z_{∞} of $x \in \Omega$ for which x is a zero of infinite order of $\operatorname{det}(A)$ for every $r \times r$

AMS (MOS) subject classifications (1970). Primary 46E25, 46E40; Secondary 34A30, 35G05, 46E10

Key words and phrases. Spaces of differentiable functions, modules of differentiable functions, finitely generated submodules, spaces of distributions, systems of linear differential equations.

submatrix A of F is nonempty, we find that there exists $(T_1, \ldots, T_q) \in [\ker(F)]^\perp$ such that for some j, $1 \le j \le q$, $\operatorname{supp}(T_j) = \{a\} \subset \operatorname{bd}(Z_\infty)$. Therefore $F'(S_1, \ldots, S_p) = (T_1, \ldots, T_q)$ for some $(S_1, \ldots, S_p) \in [\mathscr{E}'(\Omega)]^p$ which leads to a distribution equation of the form $g_1S_1 + \cdots + g_pS_p = T$ where each g_i has a zero of infinite order at a and $\operatorname{supp}(T) = \{a\}$, which is impossible. A complete proof of Theorem 1 will appear elsewhere.

3. **Applications.** For $F = (f_{ij})_{1 \le i \le p; 1 \le j \le q}$, $f_{ij} \in \mathscr{E}(\Omega)$, define $F: [\mathscr{D}'(\Omega)]^q \to [\mathscr{D}'(\Omega)]^p$ by

$$F(S_1, ..., S_q) = \left(\sum_{j=1}^q f_{1j} S_j, ..., \sum_{j=1}^q f_{pj} S_j \right)$$

and let $F': [\mathscr{D}(\Omega)]^p \to [\mathscr{D}(\Omega)]^q$ be the transpose of F.

Suppose P_1, \ldots, P_q are constant coefficient linear differential operators and consider the system of variable coefficient linear differential equations

(1)
$$f_{i1}P_1S_1 + \cdots + f_{ia}P_aS_a = T_i, \quad 1 \le i \le p,$$

where each $T_i \in \mathscr{D}'(\Omega)$. In order that there exist a solution $(S_1,\ldots,S_q) \in [\mathscr{D}'(\Omega)]^q$ to (1), it is necessary that $(T_1,\ldots,T_p) \in [\ker(F')]^\perp$ since $\operatorname{im}(F) \subset [\ker(F')]^\perp$. Equivalently, it is necessary that every "relation" between the rows of $(f_{ij})_{1 \leq i \leq p; 1 \leq j \leq q}$ be a "relation" between (T_1,\ldots,T_p) , that is, if $\psi_1 f_1 + \cdots + \psi_p f_p = (0,\ldots,0)$ where $f_i = (f_{i1},\ldots,f_{iq})$ and $\psi_i \in \mathscr{D}(\Omega)$ for $1 \leq i \leq p$, then $\psi_1 T_1 + \cdots + \psi_p T_p = 0$. When is this condition also sufficient? A partition of unity argument, the closed range theorem, and Theorem 1 give

Theorem 2. Suppose $F = (f_{ij})_{1 \le i \le p; 1 \le j \le q}$, $f_{ij} \in \mathcal{E}(\Omega)$, and let $r = \max\{\operatorname{rank}(F(x)): x \in \Omega\}$. For $\Omega \subset \mathcal{R}^n$, if there exists a solution $(S_1, \ldots, S_q) \in [\mathcal{D}'(\Omega)]^q$ to (1) for every $(T_1, \ldots, T_p) \in [\ker(F')]^\perp$, then for every $x \in \Omega$ with $\operatorname{rank}(F(x)) < r$ there exists an $r \times r$ submatrix A of F such that x is a zero of finite order of $\det(A)$. For $\Omega \subset \mathcal{R}^1$, the converse also holds.

When can (1) be solved for every $(T_1, \ldots, T_p) \in [\mathscr{D}'(\Omega)]^p$? Using the fact that $F': [\mathscr{D}(\Omega)]^p \to [\mathscr{D}(\Omega)]^q$ is one-to-one if and only if the set of $x \in \Omega$ for which $\operatorname{rank}(F(x)) = p$ is dense in Ω , it is easy to see that the analog of Theorem 2 in this case involves the following condition: For every $x \in \Omega$ with $\operatorname{rank}(F(x)) < p$ there exists a $p \times p$ submatrix A of F such that x is a zero of finite order of $\det(A)$.

Theorem 1 can also be applied to systems of variable coefficient linear differential equations of the form

(2)
$$f_{i1}P_1g_1 + \cdots + f_{iq}P_qg_q = h_i, \quad 1 \le i \le p,$$

where each $f_{ij} \in \mathscr{E}(\Omega)$, each P_j is a constant coefficient linear differential

218 B. ROTH

operator, and each $h_i \in \mathscr{E}(\Omega)$. In order that there exist a solution $(g_1,\ldots,g_q) \in [\mathscr{E}(\Omega)]^q$ to (2), it is necessary that (h_1,\ldots,h_p) be "pointwise" in $\mathrm{im}(F)$ where $F=(f_{ij})_{1\leq i\leq p; 1\leq j\leq q}: [\mathscr{E}(\Omega)]^q \to [\mathscr{E}(\Omega)]^p$, that is, for each $x\in\Omega$, $T_x(h_1,\ldots,h_p)\in T_x(\mathrm{im}(F))$ where T_x is the natural mapping of $[\mathscr{E}(\Omega)]^p$ onto $[\mathscr{E}(\Omega)]^p/[J_x]^p$ and J_x is the ideal in $\mathscr{E}(\Omega)$ consisting of all functions in $\mathscr{E}(\Omega)$ which vanish at x together with all derivatives. When is this condition also sufficient? Malgrange's characterization of the closure of a submodule of differentiable functions and Theorem 1 give

Theorem 3. Suppose $F = (f_{ij})_{1 \leq i \leq p; 1 \leq j \leq q}$, $f_{ij} \in \mathscr{E}(\Omega)$, and let $r = \max\{\operatorname{rank}(F(x)): x \in \Omega\}$. For $\Omega \subset \mathscr{R}^n$, if there exists a solution $(g_1, \ldots, g_q) \in [\mathscr{E}(\Omega)]^q$ to (2) for every (h_1, \ldots, h_p) which is pointwise in $\operatorname{im}(F)$, then for every $x \in \Omega$ with $\operatorname{rank}(F(x)) < r$ there is an $r \times r$ submatrix A of F such that x is a zero of finite order of $\det(A)$. For $\Omega \subset \mathscr{R}^1$, the converse also holds.

When can (2) be solved for every $(h_1, \ldots, h_p) \in [\mathscr{E}(\Omega)]^{p_2}$? It is easy to see (even without Theorem 3) that the analog of Theorem 3 in this case involves the following condition: $\operatorname{rank}(F(x)) = p$ for all $x \in \Omega$. And assuming that $\Omega \subset \mathscr{R}^n$ is P_j -convex for $1 \le j \le q$ (which is always the case for $\Omega \subset \mathscr{R}^1$), this condition is both necessary and sufficient.

BIBLIOGRAPHY

- 1. B. Malgrange, *Ideals of differentiable functions*, Tata Inst. Fund. Res. Studies in Math., no. 3, Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967. MR 35 #3446.
- 2. ——, Division des distributions, Séminaire Schwartz 1959/60, Faculté des Sci., Paris, 1960, pp. 21–25. MR 23 #A2275.
- 3. B. Roth, Finitely generated submodules of differentiable functions, Proc. Amer. Math. Soc. 34 (1972), 433-439.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING 82070