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1. A quasivariety characterization of lattices representable by A-modules. 
If A is a nontrivial ring with 1, a lattice L is "representable by A-modules" 
if it can be embedded in the lattice of submodules of some unitary left 
A-module M. This lattice of submodules is denoted T(M;A). 

A (lattice) "Horn formula" is an open formula: 

(ei = e2&e3 = É?4&...&e„_3 = en-2)=>en-l = en, 

where ex, e2,..., en are lattice polynomials. 

MAIN THEOREM . For every commutative ring A, there exists a set J(A) 
of Horn formulas such that a lattice L is representable by A-modules if 
and only if every formula of J (A) is satisfied in L. Each member of J (A) is 
constructible by a finite sequence of four basic operations. 

That is, the class JSf(A) of lattices representable by A-modules is the 
"quasivariety" of lattices satisfying J(A), for commutative A. 

OUTLINE OF PROOF. For A commutative, let i : L - > r ( M ; A ) be an 
embedding for some M. Without loss of generality, assume that L has 
a smallest element co, and i{œ) = 0. Motivated by the "abelian" lattice 
Tf{GN) of [2,4.2] with G = M, we consider "constraint systems" in 
variables ak (corresponding to coordinate positions in MN) and "auxiliary" 
variables bk (with existential quantifiers understood) for k in 
N = {1,2, 3 , . . .} . Consider r = (d1,d2,d3,d4) below. 

(d^ a1ex1, a2ex2, akea> for ^ 3 ( x 1 , x 2 e L ) . 

(d2) b 1 e x 3 , b2ex1, bkew for / c ^ 3 ( x 3 e L ) . 

(d3) ax- a2-bl= 0. 

(d4) a t - V ? 2 = 0 (A0eA). 

A "solution" f.N -• M of r satisfies 

(ej f{l)ei(Xl)9 f(2)ei(x2\ f(k)ei(œ) = 0 ïovk^3(dl). 

(e2) f(l)-f(2)ei(x3) ( d 3 , M x 3 ) . 

(e3) There exists v e i(xx) such that À0v = ƒ(!) (d4, b2 e x j . 
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Formally, let Nx = {ak:keN}9 let N2 - NXKJ {bk:keN}> and let 
M f and M2 be the A-modules of all functions Nx -> M and iV2 -» M, 
respectively. Let a "A-equation" be a function g:N2 -• A such that 
g(ak) = g(fck) = 0 except for finitely many k in N; g determines the "linear 
solution set" g* in r(Mf;A): 

g* - l m 6 M f : £ (gta^a») + # k ) m ( y = oj-

A "constraint function" is a function a :N 2 -* L such that a(ak) = a(bk) = co 
except for finitely many fe; it determines a "box" i*(a) in HMfjA): 

i*(a) = {meM2
w: m(ck) e *a(cfc) for ck e N2}. 

If a is a constraint function and G =* {gx, g2 , .• . , g„} is a finite (possibly 
empty) set of A-equations, the pair (G, a) is a "constraint system". An 
"extended solution" m:N2~+ M of (G, a) is a member of 

/*0(G, a) - ^(a) n g* n g$ n • • • n g£ in r(M? ; A). 

A "solution" m,:Nl -* M oî (G,a) is a restriction m' = m\N1 of an ex­
tended solution m. Let Z)(L;A) denote the set of all constraint systems. 
Given M and i, define ju:D(L;A) -> r(M5°;A) by the "solution set" 
JU(G, a) = {m\N1 :m e fi0(G, a)}. Since i(co) = 0, /*(G, a) has "finite support" 
as in [2, p. 181]. 

Now, D(L; A) can be defined for any lattice L, not just those in if (A). 
Meet and join operations, corresponding to solution set intersection 
and sum, can be defined abstractly in D(L;A). We can also define "equi­
valence" of constraint systems, obtaining a congruence E(L;A) on 
D(L;A). If an embedding i:L~> F(M;A) with i(œ) = 0 exists, the cor­
responding )U:D(L;A)-> r(M5°;A) preserves meet and join and takes 
equivalent constraint systems modulo E(L;A) into the same solution set. 
Seven "rules of equivalence" generate £(L;A); we reconsider r = 
(d1,d2,d3, dA) to suggest them : 

Constraint decrease: The lattice constraint of al can be changed to 
xi A (x2 v x3% sin c e ^3 c a n be solved for al9 ax = a2 + b1? and a2 + £>! 
is in x2 v x3. Linear combination augmentation: Any A-equation of 
the form /W3 + A'd4 can be added to r. Defined variable augmentation: We 
can "define" an unused auxiliary variable, say b4, by adding a A-equation, 
say Xa2 + A'b2 + b4 — 0, if we change the lattice constraint of b4 to 
x2 v xx { — Xa2 — A'b2 is in x2 v x j . Union augmentation: Add the 
A-equation a2 — bn — fc9 = 0, for example, expressing a variable a2 as 
a sum of two unused auxiliary variables. Then change the lattice con­
straints of b7 and b9 to some x4 and x5 in L, respectively, such that 
x2 cz x4 v x5(a2€x2). Nu// variable augmentation: Terms Aa5 and A'a5 
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can be added to the A-equations d3 and d4, respectively, since a5eœ 
and i(a>) = 0. Inessential variables augmentation: We can add finitely 
many A-equations in the variables bk, k ^ 3, and make finitely many 
arbitrary changes in the lattice constraints of those variables. Renumber­
ing: bx and b2 can be replaced throughout r by any two other auxiliary 
variables. 

The solution set of r is unchanged by any of the above modifications. 
The primary fact about M(L;A) = D(L;A)/E(L;A) is that it is an abelian 
lattice under the induced meet and join. Intuitively, M(L; A) acts like the 
lattice of submodules with finite support of MN, for some hypothetical 
A-module M. 

Associated with any abelian lattice X is a small abelian category Ax 

[2, Main Theorem]. We next construct for each object A of AM(L;A) a ring 
homomorphism C,A preserving 1 from A into the ring of endomorphisms 
of A (ÇA(X) is a formal analogue of X\A). Let Ab and A-Mod be the usual 
categories of abelian groups and of A-modules, respectively. By [1. 
Theorem 7.14], there exists an exact embedding functor F:AM(L.A) -» Ab. 
Defining Àx = (F(ÇA(À)))(x) makes F (A) into a A-module, denoted G(A) 
(FfA(A) = UG{A)). We can prove that UWf = KAW for f:A - B in 
^M(L;A)> so Ff:G{A)^G(B) is A-linear. But then G(A) and Gf = F f 
define an exact embedding functor G:AM{L.A) -» A-Mod. Because of G, the 
lattice of subobjects of each object of AM(L.A) is in J£?(A). But then every 
interval sublattice of M(L; A) is in JS?(A) by'[2, 3.24], and M(L;A)e jg?(A) 
follows, using a direct limit of A-modules. 

We now define a lattice homomorphism ^:L-> M(L;A), similar to \j/ 
in [2, 4.3]. For x in L, i^(x) is the equivalence class in M(L; A) of ( 0 , 6X) 
in D(L;A) given by OJ^a^ = x, 9x(ck) = œ for ckeN2 — {ax}. If \j/ is 
one-to-one, it embeds Linto M(L;A), and so L is in ^f(A). Suppose L 
is in i f (A) with embedding Ï : L - > T ( M ; A ) , I(CO) = 0. Since equivalent 
constraint systems have equal solution sets, /i:D(L;A) -> r (Mf;A) 
induces a function /ï: M(L; A) -» T(Mf ; A). Clearly fiil/(x) = / i (0 , 0J = 
^i(x), where ^:T(M;A) -• r (Mf ;A) is given by 

^(M') = {me Mfimiat) e M', m(ak) = 0 for fc> 1}. 

So, \jii = jüi//. Since îj/i is one-to-one, so is ij/. Therefore, L is in if(A) if 
and only if ^ is one-to-one. 

Four of the rules generating E(L;A) are called "direct reductions", 
namely constraint decrease, linear combination augmentation, defined 
variable augmentation and union augmentation. A key argument shows 
that \\J is one-to-one iff, for each x in L and sequence r1, r 2 , . . . , rn in 
D{L; A) such that r1 = ( 0 , 0X), rn = (G, a) and r i + x is obtained by a direct 
reduction of rt (1 ^ i < ri), we have a(a1) = x. Each of the infinitely 
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many Horn formulas of J(A) is generated by a finite sequence of four 
operations. These operations imitate the four rules of direct reduction, 
with lattice polynomials replacing elements of L. Using the above, we 
show that \jj is one-to-one iff every formula of J(A) is satisfied in L, and 
the main theorem follows. 

COROLLARY. Every abelian lattice is representable by abelian groups. 

2. Comparison of classes of representable lattices. Let A and A' be rings 
with 1, not necessarily commutative. Then if(A)<=if(A') if there exists a 
ring homomorphism A -> A preserving 1, or if there exists a (A', A)-
bimodule M which is faithfully flat as a right A-module. A simple change 
of rings argument proves the first result. For the other: the exact embed­
ding functor M (x)A from A-Mod into A'-Mod induces an embedding 
from the lattice of subobjects of any M0 in A-Mod into the lattice of 
subobjects of M ®A M0 in A-Mod. Then if (A) = if (A') if A is a regular 
ring and unitary subring of A', by known ring theory. Let Q denote the 
field of rationals and Zn the ring of integers modulo n,n^2. So, if (A) = 
5£ (Q) if A has a unitary subring isomorphic to Q. Also, if (A) = if (Z„) 
if A has characteristic n for n a square-free number (prime, or a product 
of distinct primes). Let PA be the set of primes p such that 1 + 1 + • • • + 1 
(p times) is invertible in A. If P is a set of primes, let Q{P) be the unitary 
subring of Q generated by {p~1:pe P}. If A has characteristic zero, a is 
the two-sided ideal of torsion elements of A and PA/a = PA, then if (A) = 
<£(Q(PA)\ So, if (A) = &(Q(PA)) if A is torsion-free. 

Some of the above results are the best possible. Under various hypo­
theses, if (A) — if (A') # 0 is proved by constructing a Horn formula 
satisfied in all lattices in if(A') but not in all lattices in if(A). These 
formulas reflect properties of the (additive) multiples k • 1M = 1M + 1M + 
• • • + 1M for M an arbitrary A-module. For example, k • 1M = 0 if the 
characteristic of A divides fc, and k • 1M is an automorphism if k • 1 is 
invertible in A. So, we can show that if (A) — if (A') ^ 0 if the character­
istic of A does not divide the (nonzero) characteristic of A', and therefore 
if (A) 7̂  if (A') if A and A' have different characteristics. If p is a prime 
invertible in A' but not in A, then if(A) - if (A') ^ 0 , and so if(A) ^ 
if (A') if PA # PA,. If n is not square-free, then there exists A with character­
istic n such that if (A) ^ ^{Zn). Also, if A has characteristic zero and 
torsion ideal a, then if (A) / £>(Q(PA)) if PA/a # PA. If P is a proper 
subset of the primes or is empty, then A with characteristic zero exists 
such that PA = P but if (A) # &{Q{P)\ 

The detailed proofs of these results have been submitted for publication. 
C. Herrmann and W. Poguntke have recently communicated to the 

author a theorem which implies that if(A) admits ultraproducts, for 
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any ring A with 1. It then follows nonconstructively that J^(A) is always a 
quasivariety, using the known result that a class of algebras admitting 
isomorphic images, subalgebras, products and ultraproducts is a quasi­
variety. Another of their results implies that if (A) is not finitely first-
order axiomatizable if A is a unitary subring of Q. 
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