THE REPRESENTATION OF LATTICES BY MODULES

BY GEORGE HUTCHINSON

Communicated by Saunders Mac Lane, August 8, 1972

1. A quasivariety characterization of lattices representable by Λ -modules. If Λ is a nontrivial ring with 1, a lattice L is "representable by Λ -modules" if it can be embedded in the lattice of submodules of some unitary left Λ -module M. This lattice of submodules is denoted $\Gamma(M;\Lambda)$.

A (lattice) "Horn formula" is an open formula:

$$(e_1 = e_2 \& e_3 = e_4 \& \dots \& e_{n-3} = e_{n-2}) \Rightarrow e_{n-1} = e_n$$

where e_1, e_2, \ldots, e_n are lattice polynomials.

MAIN THEOREM. For every commutative ring Λ , there exists a set $J(\Lambda)$ of Horn formulas such that a lattice L is representable by Λ -modules if and only if every formula of $J(\Lambda)$ is satisfied in L. Each member of $J(\Lambda)$ is constructible by a finite sequence of four basic operations.

That is, the class $\mathcal{L}(\Lambda)$ of lattices representable by Λ -modules is the "quasivariety" of lattices satisfying $J(\Lambda)$, for commutative Λ .

OUTLINE OF PROOF. For Λ commutative, let $\iota: L \to \Gamma(M; \Lambda)$ be an embedding for some M. Without loss of generality, assume that L has a smallest element ω , and $\iota(\omega) = 0$. Motivated by the "abelian" lattice $\Gamma_f(G^N)$ of [2, 4.2] with G = M, we consider "constraint systems" in variables a_k (corresponding to coordinate positions in M^N) and "auxiliary" variables b_k (with existential quantifiers understood) for k in $N = \{1, 2, 3, \ldots\}$. Consider $r = (d_1, d_2, d_3, d_4)$ below.

$$(d_1)$$
 $a_1 \in x_1$, $a_2 \in x_2$, $a_k \in \omega$ for $k \ge 3$ $(x_1, x_2 \in L)$.

$$(d_2) b_1 \in x_3, b_2 \in x_1, b_k \in \omega for k \ge 3 (x_3 \in L).$$

$$(d_3) a_1 - a_2 - b_1 = 0.$$

$$(d_4) a_1 - \lambda_0 b_2 = 0 (\lambda_0 \in \Lambda).$$

A "solution" $f: N \to M$ of r satisfies

$$(e_1)$$
 $f(1) \in \iota(x_1)$, $f(2) \in \iota(x_2)$, $f(k) \in \iota(\omega) = 0$ for $k \ge 3$ (d_1) .

(e₂)
$$f(1) - f(2) \in \iota(x_3)$$
 $(d_3, b_1 \in x_3)$.

(e₃) There exists
$$v \in \iota(x_1)$$
 such that $\lambda_0 v = f(1)$ $(d_4, b_2 \in x_1)$.

Formally, let $N_1 = \{a_k : k \in N\}$, let $N_2 = N_1 \cup \{b_k : k \in N\}$, and let M_1^{∞} and M_2^{∞} be the Λ -modules of all functions $N_1 \to M$ and $N_2 \to M$, respectively. Let a " Λ -equation" be a function $g:N_2 \to \Lambda$ such that $g(a_k) = g(b_k) = 0$ except for finitely many k in N; g determines the "linear solution set" g^* in $\Gamma(M_2^{\infty}; \Lambda)$:

$$g^* = \left\{ m \in M_2^{\infty} : \sum_{k=1}^{\infty} (g(a_k)m(a_k) + g(b_k)m(b_k)) = 0 \right\}$$

A "constraint function" is a function $\alpha: N_2 \to L$ such that $\alpha(a_k) = \alpha(b_k) = \omega$ except for finitely many k; it determines a "box" $\iota_*(\alpha)$ in $\Gamma(M_2^{\infty}; \Lambda)$:

$$\iota_*(\alpha) = \big\{ m \in M_2^{\infty} : m(c_k) \in \iota\alpha(c_k) \quad \text{for} \quad c_k \in N_2 \big\}.$$

If α is a constraint function and $G = \{g_1, g_2, \dots, g_n\}$ is a finite (possibly empty) set of Λ -equations, the pair (G, α) is a "constraint system". An "extended solution" $m: N_2 \to M$ of (G, α) is a member of

$$\mu_0(G, \alpha) = \iota_*(\alpha) \cap g_1^* \cap g_2^* \cap \cdots \cap g_n^* \text{ in } \Gamma(M_2^{\infty}; \Lambda).$$

A "solution" $m': N_1 \to M$ of (G, α) is a restriction $m' = m | N_1$ of an extended solution m. Let $D(L; \Lambda)$ denote the set of all constraint systems. Given M and ι , define $\mu: D(L; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda)$ by the "solution set" $\mu(G, \alpha) = \{m | N_1 : m \in \mu_0(G, \alpha)\}$. Since $\iota(\omega) = 0$, $\mu(G, \alpha)$ has "finite support" as in [2, p. 181].

Now, $D(L;\Lambda)$ can be defined for any lattice L, not just those in $\mathcal{L}(\Lambda)$. Meet and join operations, corresponding to solution set intersection and sum, can be defined abstractly in $D(L;\Lambda)$. We can also define "equivalence" of constraint systems, obtaining a congruence $E(L;\Lambda)$ on $D(L;\Lambda)$. If an embedding $\iota:L\to \Gamma(M;\Lambda)$ with $\iota(\omega)=0$ exists, the corresponding $\mu:D(L;\Lambda)\to \Gamma(M_1^\infty;\Lambda)$ preserves meet and join and takes equivalent constraint systems modulo $E(L;\Lambda)$ into the same solution set. Seven "rules of equivalence" generate $E(L;\Lambda)$; we reconsider $r=(d_1,d_2,d_3,d_4)$ to suggest them:

Constraint decrease: The lattice constraint of a_1 can be changed to $x_1 \wedge (x_2 \vee x_3)$, since d_3 can be solved for a_1 , $a_1 = a_2 + b_1$, and $a_2 + b_1$ is in $x_2 \vee x_3$. Linear combination augmentation: Any Λ -equation of the form $\lambda d_3 + \lambda' d_4$ can be added to r. Defined variable augmentation: We can "define" an unused auxiliary variable, say b_4 , by adding a Λ -equation, say $\lambda a_2 + \lambda' b_2 + b_4 = 0$, if we change the lattice constraint of b_4 to $x_2 \vee x_1$ ($-\lambda a_2 - \lambda' b_2$ is in $x_2 \vee x_1$). Union augmentation: Add the Λ -equation $a_2 - b_7 - b_9 = 0$, for example, expressing a variable a_2 as a sum of two unused auxiliary variables. Then change the lattice constraints of b_7 and b_9 to some x_4 and x_5 in L, respectively, such that $x_2 \subset x_4 \vee x_5$ ($a_2 \in x_2$). Null variable augmentation: Terms λa_5 and $\lambda' a_5$

can be added to the Λ -equations d_3 and d_4 , respectively, since $a_5 \in \omega$ and $\iota(\omega) = 0$. Inessential variables augmentation: We can add finitely many Λ -equations in the variables b_k , $k \ge 3$, and make finitely many arbitrary changes in the lattice constraints of those variables. Renumbering: b_1 and b_2 can be replaced throughout r by any two other auxiliary variables.

The solution set of r is unchanged by any of the above modifications. The primary fact about $M(L;\Lambda) = D(L;\Lambda)/E(L;\Lambda)$ is that it is an abelian lattice under the induced meet and join. Intuitively, $M(L;\Lambda)$ acts like the lattice of submodules with finite support of M^N , for some hypothetical Λ -module M.

Associated with any abelian lattice X is a small abelian category A_X [2, Main Theorem]. We next construct for each object A of $A_{M(L;\Lambda)}$ a ring homomorphism ζ_A preserving 1 from Λ into the ring of endomorphisms of A ($\zeta_A(\lambda)$ is a formal analogue of $\lambda 1_A$). Let Ab and Λ -Mod be the usual categories of abelian groups and of Λ -modules, respectively. By [1. Theorem 7.14], there exists an exact embedding functor $F: A_{M(L:\Lambda)} \to Ab$. Defining $\lambda x = (F(\zeta_A(\lambda)))(x)$ makes F(A) into a Λ -module, denoted G(A) ($F\zeta_A(\lambda) = \lambda 1_{G(A)}$). We can prove that $\zeta_B(\lambda)f = f\zeta_A(\lambda)$ for $f: A \to B$ in $A_{M(L:\Lambda)}$, so $Ff: G(A) \to G(B)$ is Λ -linear. But then G(A) and Gf = Ff define an exact embedding functor $G: A_{M(L:\Lambda)} \to \Lambda$ -Mod. Because of G, the lattice of subobjects of each object of $A_{M(L:\Lambda)}$ is in $\mathcal{L}(\Lambda)$. But then every interval sublattice of $M(L:\Lambda)$ is in $\mathcal{L}(\Lambda)$ by [2, 3.24], and $M(L:\Lambda) \in \mathcal{L}(\Lambda)$ follows, using a direct limit of Λ -modules.

We now define a lattice homomorphism $\psi: L \to M(L; \Lambda)$, similar to ψ in [2, 4.3]. For x in L, $\psi(x)$ is the equivalence class in $M(L; \Lambda)$ of (\emptyset, θ_x) in $D(L; \Lambda)$ given by $\theta_x(a_1) = x$, $\theta_x(c_k) = \omega$ for $c_k \in \mathbb{N}_2 - \{a_1\}$. If ψ is one-to-one, it embeds L into $M(L; \Lambda)$, and so L is in $\mathcal{L}(\Lambda)$. Suppose L is in $\mathcal{L}(\Lambda)$ with embedding $i: L \to \Gamma(M; \Lambda)$, $i(\omega) = 0$. Since equivalent constraint systems have equal solution sets, $\mu: D(L; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda)$ induces a function $\bar{\mu}: M(L; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda)$. Clearly $\bar{\mu}\psi(x) = \mu(\emptyset, \theta_x) = \bar{\psi}i(x)$, where $\bar{\psi}: \Gamma(M; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda)$ is given by

$$\overline{\psi}(M') = \{ m \in M_1^{\infty} : m(a_1) \in M', m(a_k) = 0 \text{ for } k > 1 \}.$$

So, $\bar{\psi}_{l} = \bar{\mu}\psi$. Since $\bar{\psi}_{l}$ is one-to-one, so is ψ . Therefore, L is in $\mathcal{L}(\Lambda)$ if and only if ψ is one-to-one.

Four of the rules generating $E(L;\Lambda)$ are called "direct reductions", namely constraint decrease, linear combination augmentation, defined variable augmentation and union augmentation. A key argument shows that ψ is one-to-one iff, for each x in L and sequence r_1, r_2, \ldots, r_n in $D(L;\Lambda)$ such that $r_1 = (\emptyset, \theta_x), r_n = (G, \alpha)$ and r_{i+1} is obtained by a direct reduction of r_i $(1 \le i < n)$, we have $\alpha(a_1) = x$. Each of the infinitely

many Horn formulas of $J(\Lambda)$ is generated by a finite sequence of four operations. These operations imitate the four rules of direct reduction, with lattice polynomials replacing elements of L. Using the above, we show that ψ is one-to-one iff every formula of $J(\Lambda)$ is satisfied in L, and the main theorem follows.

COROLLARY. Every abelian lattice is representable by abelian groups.

2. Comparison of classes of representable lattices. Let Λ and Λ' be rings with 1, not necessarily commutative. Then $\mathcal{L}(\Lambda) \subset \mathcal{L}(\Lambda')$ if there exists a ring homomorphism $\Lambda \to \Lambda$ preserving 1, or if there exists a (Λ', Λ) bimodule M which is faithfully flat as a right Λ -module. A simple change of rings argument proves the first result. For the other: the exact embedding functor $M \otimes_{\Lambda}$ from Λ -Mod into Λ' -Mod induces an embedding from the lattice of subobjects of any M_0 in Λ -Mod into the lattice of subobjects of $M \otimes_{\Lambda} M_0$ in Λ' -Mod. Then $\mathcal{L}(\Lambda) = \mathcal{L}(\Lambda')$ if Λ is a regular ring and unitary subring of Λ' , by known ring theory. Let Q denote the field of rationals and Z_n the ring of integers modulo $n, n \ge 2$. So, $\mathcal{L}(\Lambda) =$ $\mathcal{L}(\mathbf{Q})$ if Λ has a unitary subring isomorphic to \mathbf{Q} . Also, $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbf{Z}_n)$ if Λ has characteristic n for n a square-free number (prime, or a product of distinct primes). Let P_{Λ} be the set of primes p such that $1 + 1 + \cdots + 1$ (p times) is invertible in Λ . If P is a set of primes, let Q(P) be the unitary subring of Q generated by $\{p^{-1}: p \in P\}$. If Λ has characteristic zero, \mathfrak{a} is the two-sided ideal of torsion elements of Λ and $P_{\Lambda/\alpha} = P_{\Lambda}$, then $\mathcal{L}(\Lambda) =$ $\mathcal{L}(\mathbf{Q}(P_{\Lambda}))$. So, $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbf{Q}(P_{\Lambda}))$ if Λ is torsion-free.

Some of the above results are the best possible. Under various hypotheses, $\mathcal{L}(\Lambda) - \mathcal{L}(\Lambda') \neq \emptyset$ is proved by constructing a Horn formula satisfied in all lattices in $\mathcal{L}(\Lambda')$ but not in all lattices in $\mathcal{L}(\Lambda)$. These formulas reflect properties of the (additive) multiples $k \cdot 1_M = 1_M + 1_M + \cdots + 1_M$ for M an arbitrary Λ -module. For example, $k \cdot 1_M = 0$ if the characteristic of Λ divides k, and $k \cdot 1_M$ is an automorphism if $k \cdot 1$ is invertible in Λ . So, we can show that $\mathcal{L}(\Lambda) - \mathcal{L}(\Lambda') \neq \emptyset$ if the characteristic of Λ does not divide the (nonzero) characteristic of Λ' , and therefore $\mathcal{L}(\Lambda) \neq \mathcal{L}(\Lambda')$ if Λ and Λ' have different characteristics. If p is a prime invertible in Λ' but not in Λ , then $\mathcal{L}(\Lambda) - \mathcal{L}(\Lambda') \neq \emptyset$, and so $\mathcal{L}(\Lambda) \neq \mathcal{L}(\Lambda')$ if $P_{\Lambda} \neq P_{\Lambda'}$. If p is not square-free, then there exists Λ with characteristic p such that $\mathcal{L}(\Lambda) \neq \mathcal{L}(\mathbb{Z}_p)$. Also, if Λ has characteristic zero and torsion ideal p, then p has p has a proper subset of the primes or is empty, then p with characteristic zero exists such that p has p but p has p has p has a proper subset of the primes or is empty, then p with characteristic zero exists such that p has p but p has p has

The detailed proofs of these results have been submitted for publication. C. Herrmann and W. Poguntke have recently communicated to the author a theorem which implies that $\mathcal{L}(\Lambda)$ admits ultraproducts, for

any ring Λ with 1. It then follows nonconstructively that $\mathcal{L}(\Lambda)$ is always a quasivariety, using the known result that a class of algebras admitting isomorphic images, subalgebras, products and ultraproducts is a quasivariety. Another of their results implies that $\mathcal{L}(\Lambda)$ is not finitely firstorder axiomatizable if Λ is a unitary subring of Q.

REFERENCES

P. J. Freyd, Abelian categories: An introduction to the theory of functors, Harper's Series in Modern Math., Harper & Row, New York, 1964. MR 29 # 3517.
G. Hutchinson, Modular lattices and abelian categories. J. Algebra 19 (1971), 156-184.

MR 43 #4880.

DIVISION OF COMPUTER RESEARCH AND TECHNOLOGY, NIH, PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH, EDUCATION AND WELFARE, BETHESDA, MARYLAND 20014