## A CHARACTERIZATION OF GROWTH IN LOCALLY COMPACT **GROUPS**

## BY J. W. JENKINS1

Communicated by Calvin C. Moore, July 31, 1972

G will denote throughout a separable, connected, locally compact group. Fix a left Haar measure on G and for a measurable subset A of G, let  $|A|_G$  denote the measure of A. The purpose of this note is to announce results concerning the asymptotic behavior of  $|U^n|_G$  where U is a compact neighborhood of the identity e in G, and to indicate some of the applications these results have for various areas. The following definitions are required:

DEFINITION 1. G has polynomial growth if there is a polynomial p such that for each compact neighborhood U of e, there is a constant C(U) so that

$$|U^n|_G \le C(U)p(n) \qquad (n = 1, 2, \ldots)$$

 $(U^n = \{u_1u_2, \dots, u_n | u_i \in U, 1 \le i \le n\})$ . G has exponential growth if for each compact neighborhood U of e there is a t > 1 such that

$$|U^n|_G \ge t^n \qquad (n = 1, 2, \ldots).$$

Note that since G is connected, its "growth" will be determined by the behavior of  $|U^n|_G$  for any one compact neighborhood U of e.

For  $a, b \in G$ , let [a, b] denote the subsemigroup of G generated by a and b, i.e.,

$$[a,b] = \{x_1x_2, \dots, x_n | x_i \in \{a,b\}, 1 \le i \le n, n = 1, 2, \dots\}.$$

[a, b] is said to be free if  $a[a, b] \cap b[a, b] = \emptyset$ . A subset S of G is uniformly discrete if there is a neighborhood U of e in G such that  $sU \cap tU = \emptyset$  for  $s, t \in S, s \neq t$ .

DEFINITION 2. G is type NF if there does not exist  $a, b \in G$  such that [a, b] is free and uniformly discrete.

Let H be a connected Lie group with Lie algebra h, and let  $g \to Adg$ be the canonical adjoint representation of H on h. H is said to be type R if the eigenvalues of Adg are of absolute value one for each  $g \in H$ .

Since G is connected, there exists an arbitrarily small compact normal subgroup K of G such that G/K is a Lie group.

DEFINITION 3. G is type R if there exists a compact normal subgroup K

AMS (MOS) subject classifications (1969). Primary 22.20, 22.50, 28.75. 

<sup>1</sup> This research was partially supported by NSF Grants GP-28925 and GP-7952X3.

such that G/K is a type R Lie group.

**THEOREM 4.** The following conditions are equivalent:

- (i) G has polynomial growth,
- (ii) G is type NF,
- (iii) G is type R.

OUTLINE OF PROOF. (i)  $\Rightarrow$  (ii) is straightforward. To establish that (ii)  $\Rightarrow$  (iii), we define groups  $G_{\theta}$  for each  $\theta = \theta_1 + i\theta_2$ ,  $\theta_1$ ,  $\theta_2 \in \mathbb{R}$ ,  $\theta_1 \neq 0$  and show that each  $G_{\theta}$  is not type NF and that, if G is not type R, G contains some  $G_{\theta}$  as a topological subgroup. It then follows that G is not type NF.

To show that (iii)  $\Rightarrow$  (i), we first reduce to the case where G is simply connected and solvable. One can then write  $G = g_1(t_1)g_2(t_2)\cdots g_n(t_n)$  where each  $g_i(t_i)$  is a one parameter subgroup of G. The argument proceeds by induction on n, using the fact that since G is type R,  $\|Adg_i(t)\| \le p(t)$  for some polynomial p.

Comparison with discrete groups. Milnor [8] and Wolf [11] have investigated the growth of discrete solvable groups in connection with the study of fundamental groups of Riemannian manifolds with negative curvature. Combining their results with a recent result of Tits [10], one has the following: If H is a linear group over a field k with a finite set of generators  $A = A^{-1}$ , then (i) either  $|A^n|_H \leq p(n)$  for some polynomial p and all  $n \geq 1$  or there is a t > 1 such that  $|A^n|_H \geq t^n$  for all  $n \geq 1$ , and (ii) if  $|A^n|_H$  has polynomial growth, then H is a finite extension of a solvable group S and S is a finite extension of a nilpotent group. We obtain analogous results for connected groups as a corollary to Theorem 4.

COROLLARY 5. (i) Either G has polynomial growth or G has exponential growth.

(ii) If G is a connected Lie group with polynomial growth, then G is the compact extension of a solvable Lie group S and Ad S is an analytic subgroup of a compact extension of a nilpotent group.

REMARK. The first part of this corollary shows that in a connected group, a compact set cannot grow at a rate intermediate to polynomial and exponential, for example, such as  $t^n/\log n$ . This answers a question raised in Emerson and Greenleaf [4]. With regard to the second part, we remark that Hulanicki [5] has shown that a separable, locally compact group that is the compact extension of a nilpotent group cannot have exponential growth.

Strong amenability. In [4] Emerson and Greenleaf define a locally compact group H to be strongly amenable if for every compact neighborhood  $U = U^{-1}$  of e in H

$$\lim_{n} |U^{n+1}|_{H}/|U^{n}|_{H} = 1.$$

Greenleaf has asked if every connected, amenable, unimodular group is necessarily strongly amenable. The following corollary to Theorem 4 provides a large class of counterexamples.

COROLLARY 6. If G is strongly amenable, then G is type R. If G is type R, then

$$\lim_{n} \inf |U^{n+1}|_{G}/|U^{n}|_{G} = 1$$

for each compact neighborhood U of e.

In particular, let G be the semidirect product of R with  $R^2$  given by the homomorphism  $\varphi: R \to \operatorname{Aut}(R^2)$  where  $\varphi(t)(x, y) = (e^t x, e^{-t} y)$  for  $t \in R$ ,  $(x, y) \in R^2$ . Then G is connected, amenable, unimodular but not type R, and hence, not strongly amenable.

An ergodic theorem. Let X be a compact, separable metric space and assume G is unimodular and has a jointly continuous action  $G \times X \to X$  on X. A sequence of Borel subsets  $\{A_n^*\}$  of G is called balanced with respect to the action of G on X if  $0 < |A_n|_G < \infty$  for each n and if whenever  $\mu$  is a probability measure on X invariant and ergodic under G and  $f \in C(X)$ , the continuous complex valued functions on X, then

$$\lim_{n} |A_n|_G^{-1} \int_{A_n} f(g \circ x_0) \, dg$$

exist and equals  $\int f d\mu$  for  $\mu$ -almost all  $x_0 \in X$ .

An increasing sequence of subsets  $\{A_n\}$  of G grows evenly in G if  $0 < |A_n|_G < \infty$  for each n,

$$\lim_{k} |A_{k}|_{G}^{-1}|(A_{k}A_{n})\Delta A_{k}|_{G} = 0 = \lim_{k} |A_{k}|_{G}^{-1}|(A_{n}A_{k})\Delta A_{k}|_{G}$$

for each n, and there is a constant c > 0 such that  $|A_n^{-1}A_n|_G \le c|A_n|_G$  for each n.

Calderón [3] and Bewley [2] have proved the following generalization of Birkhoff's individual ergodic theorem: If G contains a sequence  $\{A_n\}$  that grows evenly in G, then  $\{A_n\}$  is balanced with respect to the action of G on X.

Auslander and Brezin [1] have shown that any connected, simply connected, nilpotent Lie group N contains a sequence of compact connected subsets that grow evenly in N. This is a special case of

COROLLARY 7. If G satisfies the equivalent conditions of Theorem 4 and

if  $U = U^{-1}$  is a compact neighborhood of the identity, then a subsequence of  $\{U^n|n=1,2,\ldots\}$  grows unevenly in G.

On symmetry of  $\mathcal{L}^1(G)$ . A Banach \*-algebra  $\mathcal{U}$  is symmetric if  $-xx^*$ is quasi-regular for each  $x \in \mathcal{U}$ , or equivalently by Raikov's Theorem [9], if

$$(v(x) =) \lim_{n} ||x^{n}||^{1/n} = \sup ||T_{x}|| \qquad (= \lambda(x))$$

for each  $x = x^* \in \mathcal{U}$ , where the sup is taken over all \*-representations  $x \to T_r$  of  $\mathcal{U}$ . Hulanicki [5] has shown that if H is a separable, locally compact group such that  $\lim_{n} |A^{n}|_{H}^{1/n} \leq 1$  for any compact subset A of G, then  $v(x) = \lambda(x)$  for all  $x = x^* \in \mathcal{L}^1(H)$  with compact support. Thus, any group with polynomial growth "almost" has a symmetric group algebra. (Observe that symmetry fails in this case only when the spectral radius is not continuous, and it is not known if this can ever occur in a group algebra.)

On the other hand, if H is a discrete group,  $l^1(H)$  is not symmetric if H contains a free semigroup [a, b] (cf. Jenkins [6]). There is evidence that suggests a similar statement obtains if G is not type NF. Theorem 4, therefore, lends support to a conjecture this author originally stated in [7], to wit,  $\mathcal{L}^1(G)$  is symmetric if, and only if, G is type NF.

Proofs of these and related results will appear elsewhere. This author wishes to express his thanks to R. Howe for many helpful suggestions related to this work.

## REFERENCES

- 1. L. Auslander and J. Brezin, Uniform distributions in solvmanifolds, Advances in Math. 7 (1971), 111–144.
- 2. T. Bewley, Extension of the Birkhoff and von Neumann ergodic theorems to general semi-groups, Ann. Inst. Henri Poincaré 7 (1971), 283-291.

  3. A. P. Calderón, A general ergodic theorem, Ann. of Math. (2) 58 (1953), 182-191.
- MR 14, 1071.
- 4. W. R. Emerson and F. P. Greenleaf, Asymptotic behavior of products  $C^p = C + \cdots + C$  in locally compact abelian groups, Trans. Amer. Math. Soc. 145 (1969), 171–204. MR 40 #2780.
- 5. A. Hulanicki, On positive functionals on a group algebra multiplicative on a subalgebra, Studia. Math. 37 (1971), 163-171.
- 6. J. Jenkins, On the spectral radius of elements in a group algebra, Illinois J. Math. 15 (1971), 551-554.
- 7. —, Nonsymmetric group algebras, Studia Math. (to appear).

  8. J. Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447-449. MR 39 #6212.

  9. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math.,
- Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.
  - 10. J. Tits, Free subgroups in linear groups (to appear).
- 11. J. A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421-446. MR 40 #1939.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, State University of New York, Albany, New York 12203