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G will denote throughout a separable, connected, locally compact group. 
Fix a left Haar measure on G and for a measurable subset A of G, let 
\A\G denote the measure of A. The purpose of this note is to announce 
results concerning the asymptotic behavior of \Un\G where U is a compact 
neighborhood of the identity e in G, and to indicate some of the applica­
tions these results have for various areas. The following definitions are 
required : 

DEFINITION 1. G has polynomial growth if there is a polynomial p such 
that for each compact neighborhood U of e, there is a constant C(U) so 
that 

\Un\G S C(U)p(n) (n= l ,2 , . . . ) 

(Un = {«^2,. •., u„\Ui e U, 1 ^ i ^ n}). G has exponential growth if for 
each compact neighborhood U of e there is a t > 1 such that 

| I /" |G^t" (n=l ,2 , . . . ) . 

Note that since G is connected, its "growth" will be determined by the 
behavior of |I7W|G for any one compact neighborhood U of e. 

For a,beG, let [a, b] denote the subsemigroup of G generated by a and 
b, i.e., 

[a, b] = {x1x2,..., xn|x; G {a, b}, 1 ^ i ^ n, n = 1,2,...}. 

[a, b] is said to be free if a[a, b] n b[a, ft] = 0 . A subset S of G is uniformly 
discrete if there is a neighborhood 1/ of e in G such that sU ntU = 0 for 
s,teS9s # £• 

DEFINITION 2. G is type iVF if there does not exist a,beG such that 
[a, ft] is free and uniformly discrete. 

Let H be a connected Lie group with Lie algebra I), and let g -• Adg 
be the canonical adjoint representation of H on I). H is said to be type R 
if the eigenvalues of Adg are of absolute value one for each g G H. 

Since G is connected, there exists an arbitrarily small compact normal 
subgroup K of G such that G/K is a Lie group. 

DEFINITION 3. G is type R if there exists a compact normal subgroup X 
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such that G/K is a type R Lie group. 

THEOREM 4. The following conditions are equivalent: 
(i) G has polynomial growth, 
(ii) G is type NF, 
(iii) G is type R. 

OUTLINE OF PROOF, (i) => (ii) is straightforward. To establish that 
(ii) => (iii), we define groups G9 for each 6 = 6X + iö2,6l9 62 eR, 0X =£ 0 
and show that each Ge is not type NF and that, if G is not type R, G contains 
some G0 as a topological subgroup. It then follows that G is not type NF. 

To show that (iii) => (i), we first reduce to the case where G is simply 
connected and solvable. One can then write G = gx(ti)g2{t2) ' * • gn{Q 
where each gf(tf) is a one parameter subgroup of G. The argument pro­
ceeds by induction on n, using the fact that since G is type R, ||Adgj(t)|| 
^ p(t) for some polynomial p. 

Comparison with discrete groups. Milnor [8] and Wolf [11] have investi­
gated the growth of discrete solvable groups in connection with the study 
of fundamental groups of Riemannian manifolds with negative curvature. 
Combining their results with a recent result of Tits [10], one has the 
following: If if is a linear group over a field k with a finite set of generators 
A = A*1, then (i) either \An\H ^ p(n) for some polynomial p and all 
n ^ 1 or there is a t > 1 such that \An\H ;> tn for all n ^ l , and (ii) if 
\An\H has polynomial growth, then H is a finite extension of a solvable 
group S and S is a finite extension of a nilpotent group. We obtain analo­
gous results for connected groups as a corollary to Theorem 4. 

COROLLARY 5. (i) Either G has polynomial growth or G has exponential 
growth. 

(ii) If G is a connected Lie group with polynomial growth, then G is the 
compact extension of a solvable Lie group S and Ad S is an analytic sub­
group of a compact extension of a nilpotent group. 

REMARK. The first part of this corollary shows that in a connected 
group, a compact set cannot grow at a rate intermediate to polynomial 
and exponential, for example, such as tn/logn. This answers a question 
raised in Emerson and Greenleaf [4]. With regard to the second part, 
we remark that Hulanicki [5] has shown that a separable, locally compact 
group that is the compact extension of a nilpotent group cannot have 
exponential growth. 

Strong amenability. In [4] Emerson and Greenleaf define a locally 
compact group H to be strongly amenable if for every compact neighbor­
hood U = U'1 oîeinH 
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lim|t/"+1|H/|LO, = l. 
n 

Greenleaf has asked if every connected, amenable, unimodular group 
is necessarily strongly amenable. The following corollary to Theorem 4 
provides a large class of counterexamples. 

COROLLARY 6. If G is strongly amenable, then G is type R. If G is type R, 
then 

liminf|l/w+1|G/|[/M|G= 1 
n 

for each compact neighborhood U of e. 

In particular, let G be the semidirect product of R with R2 given by the 
homomorphism cp:R-> Aut(R2) where (p(t)(x, y) = (efx, e~fy) for teR, 
(x, y)eR2. Then G is connected, amenable, unimodular but not type R, 
and hence, not strongly amenable. 

An ergodic theorem. Let I b e a compact, separable metric space and 
assume G is unimodular and has a jointly continuous action G x X -» X 
on X. A sequence of Borel subsets {An} of G is called balanced with respect 
to the action of G on X if 0 < \An\G < oo for each n and if whenever JJ, is a 
probability measure on X invariant and ergodic under G and feC(X), 
the continuous complex valued functions on X, then 

lim l ^ 1 f(gox0)dg 

exist and equals \fd\i for //-almost all x0 e X. 
An increasing sequence of subsets {An} of G grows evenly in G if 

0 < \AI\G < °° f°r e a ch n> 

lim \Ak\^\(AkAn)AAk\G = 0 = lim \Ak\ö \AnAk)^Ak\G 
k k 

for each n, and there is a constant c > 0 such that \A~ 1An\G ^ c\An\G for 
each n. 

Calderón [3] and Bewley [2] have proved the following generalization 
of Birkhoff's individual ergodic theorem: If G contains a sequence {An} 
that grows evenly in G, then {An} is balanced with respect to the action of 
GonX. 

Auslander and Brezin [1] have shown that any connected, simply con­
nected, nilpotent Lie group N contains a sequence of compact connected 
subsets that grow evenly in N. This is a special case of 

COROLLARY 7. If G satisfies the equivalent conditions of Theorem 4 and 
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if U = U * is a compact neighborhood of the identity, then a subsequence 
of [Un\n = 1,2,...} grows unevenly in G. 

On symmetry of S£X(G). A Banach *-algebra °ll is symmetric if -xx* 
is quasi-regular for each x e °U, or equivalently by Raikov's Theorem [9], if 

(v(x)=)lim||xl1/w = sup||TJ (=A(x)) 
n 

for each x = x* e % where the sup is taken over all "^representations 
x -• Tx of %. Hulanicki [5] has shown that if H is a separable, locally 
compact group such that limn\A

n\j/n ^ 1 for any compact subset A of G, 
then v(x) = /l(x) for all x = x* e ̂ ( H ) with compact support. Thus, any 
group with polynomial growth "almost" has a symmetric group algebra. 
(Observe that symmetry fails in this case only when the spectral radius is 
not continuous, and it is not known if this can ever occur in a group 
algebra.) 

On the other hand, if H is a discrete group, ^{H) is not symmetric if 
H contains a free semigroup [a, b] (cf. Jenkins [6]). There is evidence that 
suggests a similar statement obtains if G is not type NF. Theorem 4, 
therefore, lends support to a conjecture this author originally stated in 
[7], to wit, jSf 1(G) is symmetric if, and only if, G is type NF. 

Proofs of these and related results will appear elsewhere. This author 
wishes to express his thanks to R. Howe for many helpful suggestions 
related to this work. 
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