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In [4], the author proved the Morse lemma on a real Banach space E 
which is the dual space of some space E0, as for example the Sobolev 
spaces Lk

p,k ^ 0,1 < p < co and the Holder spaces Ck,(X [5]. The author's 
first result extended earlier versions by Morse and Palais [2], [3]. In this 
note we state a theorem and sketch a proof of the Morse lemma for any 
Banach space. 

Let ƒ : U -• R be at least C3 (3 times differentiate) with 0 G U a critical 
point of ƒ (Df0 = 0). By the Taylor theorem we can write ƒ as 

/(x) = K^x,x>+/(0) 
where A:U -» L(E, £*) {the linear maps from E to E*} is C1 and symmet­
ric ; i.e., 

(Axu, t>> = (Axv, M> Vu, v e E. 

Here (Axu, v) denotes the standard bilinear pairing of E and £*. 

DEFINITION . 0 is said to be a nondegenerate critical point if 
(1) 3a nbhd N c U of 0 and constants Cx and C2 so that Vt, t', tx, t2 G N. 

(a) A? is injective (thus At is injective). 
(b) \\DAt(h)(y)\\ ^ CM • \\At,y\\ for all fc,y e£ . 
(c) \\DAtl(h)(y) - DAt2(h)(y)\\ ^ C2\\h\\ • \\tl - t2\\ \\At,y\\ for all h, 

yeE, where D denotes the Fréchet derivative of A with respect to the 
subscript variable. 

(2)(a) For each t G AT, (Atxn9 y} converges to zero for all y iff (A0xn, y} 
converges to zero for all y. 

(b) Given teN if <Atx„,y> converges to zero for all ysE then 
(DAt(h)(xn), y} converges to zero of all y G £ and h G E. 

It is not difficult to check that if E = H (Hubert space) and A0:H -+ H 
is an isomorphism (the standard definition of nondegeneracy) then con­
ditions (1) and (2) are satisfied. 

THEOREM (MORSE LEMMA).Let f:U-*R be C3 with 0G U a nonde­
generate critical point off Then there exists a local diffeomorphism <\> of a 
nbdh of 0 so that 

/o(p(x) = iD2/o(x,x) + /(0), 

where D2fo *s the second derivative off at 0. 
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We shall sketch the principal idea in the proof. Let teN where N is 
given as above. For each ye E define fye (Range A^f by fy(Atx) 
= (A0x, y}. Condition 2(a) guarantees that fy is continuous on Range At. 
Condition 1(a) says that Range At = £*. Thus 1(a) and 2(a) together imply 
that^ can be extended uniquely to an element of £**. 

Let T be the set of functional on £* induced by E (the weak * topology). 
Condition 2(a) says that fy is T-continuous for each y and therefore by a 
well-known result (cf. [1, p. 420]) in functional analysis fy e T. Thus there 
is an element Qty e E so that 

<Atx9 Qty} = <A0x, y} or <AtQty, x} = <A0y, x} Vx, y. 

This implies that AtQt = A0. From conditions 1(b) and 1(c) and 2(b) one 
can show that Qte GL(E) and that t -> Qt is C1. Now Q0 = I a nd s o 

locally we get a map Pt e GL{E\ t-> P^C1 with Pf = Qt. Set Rt = P; \ 
As in [4] it follows that (Atu,v} = (A0Rtu,Rtv},VM,veE. From the 
inverse function theorem it follows that the map i// : x -> Rx(x) has a local 
inverse </> and that for 

f(t) = KAM(t)>+f(0) 
= i<xo^(4^(0>+/(0), 

so that 

fo<Kt) = KA0t9ty+f(Q) 

= $D2f0(t,t)+f(0) 

which concludes the proof. 
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