GROUPS OF INVERTIBLE ELEMENTS OF BANACH ALGEBRAS¹

BY YVONNE YUEN²

Communicated by Mary Ellen Rudin, July 20, 1972

ABSTRACT. Let A be a complex Banach algebra, G its group of invertible elements, and G_e the component of the identity of G. Then G_e is a closed, normal subgroup of G. This paper contains examples of B^* algebras A for which G/G_e is finite, but not trivial, and of a B^* algebra for which G/G_e is noncommutative.

Let A denote a complex Banach algebra, G its group of invertible elements, and G_e the component of the identity of G. If A is finite-dimensional, or if A = B(H), the algebra of all bounded linear operators on a Hilbert space H, or if A is commutative, then G/G_e is torsion free. For the first two cases we actually have G connected, so $G = G_e$. A proof of the last result, which is due to Lorch, can be found in [3, p. 15]. We shall give examples of closed, noncommutative subalgebras of B(H) for which G/G_e is finite, but not trivial, and of a B^* algebra for which G/G_e is not abelian. Our examples will be special cases of the following class of Banach algebras.

Let m be a finite, positive Borel measure whose support is a compact Hausdorff space X. Let A(X, n) denote the set of all continuous functions from X into M_n , the algebra of all complex $n \times n$ matrices. Then A(X, n)is a Banach algebra under the pointwise addition and multiplication of functions and the following norm:

$$||F|| = \sup_{x \in X} |F(x)|, \qquad F \in A(X, n),$$

where

$$|F(x)| = \sup \left\{ |F(x)y| : y \in \mathbb{C}^n, \sum_{i=1}^n |y_i|^2 \le 1 \right\}$$

We can also define an involution on A(X, n) by

$$F^*(x) = (F(x))^*$$
 for $F \in A(X, n)$ and $x \in X$,

where $(F(x))^*$ denotes the conjugate transpose of F(x). Then A(X, n) is a B*-algebra under this norm and involution. For, each $F \in A(X, n)$ induces an operator \tilde{F} on $H = L^2(m) \oplus \cdots \oplus L^2(m)$ by

$$(\tilde{F}f)(x) = F(x)f(x)$$
 for $f \in H$ and $x \in X$.

AMS (MOS) subject classifications (1970). Primary 46L05, 46D10; Secondary 55E40.

Key words and phrases. Banach algebra, torsion, homotopy group.

This research was supported by N.S.F. Grant GP-24182.

The author would like to thank Professor E. Faddell for his help.

One checks that $(F^*)^{\sim}$ is the adjoint of \tilde{F} and that $F \to \tilde{F}$ is a norm-preserving isomorphism of A(X, n) onto a B^* -subalgebra of B(H).

The group of invertible elements of A(X, n), which we denote by G(X, n), is the set of all continuous functions from X into GL(n), the group of all invertible complex $n \times n$ matrices. Let $G_e(X, n)$ denote the component of the identity of G(X, n). Then the elements of $G(X, n)/G_e(X, n)$ are just the homotopy classes of maps from X into GL(n) because two maps $f, g \in G(X, n)$ are homotopic if and only if $fg^{-1} \in G_e(X, n)$.

Notation. Let S and T be topological spaces. We let [S, T] denote the space of homotopy classes of maps from S into T with the topology derived from the compact-open topology on the set Map(S, T) of continuous functions from S into T. If T is a topological group, then so is Map(S, T) under the pointwise multiplication of functions, and it is easily shown that [S, T] is also a topological group [4, p. 34].

PROPOSITION. Let A(X, n), G(X, n), $G_e(X, n)$ be defined as above. Then $G(X, n)/G_e(X, n)$ is homeomorphic and isomorphic to $[X, \mathcal{U}(n)]$ where $\mathcal{U}(n)$ denotes the group of all complex unitary $n \times n$ matrices.

PROOF. We have $G(X,n)/G_e(X,n) = [X,GL(n)]$ because G(X,n) is $\operatorname{Map}(X,GL(n))$ and two maps in G(X,n) are homotopic if and only if they lie in the same component of G(X,n). Now since GL(n) is homeomorphic to $\mathscr{U}(n) \times \mathbb{R}^{n^2}$ [1, p. 16] and \mathbb{R}^{n^2} is contractible, every $f \in \operatorname{Map}(X,GL(n))$ is homotopic to a map $\tilde{f} \in \operatorname{Map}(X,\mathscr{U}(n))$. Thus [X,GL(n)] is homeomorphic and isomorphic to $[X,\mathscr{U}(n)]$ under the map $f \to \tilde{f}$.

We now construct our examples by choosing appropriate spaces X.

EXAMPLE 1. Let S^k denote the real k-sphere. Then the following statements hold for the algebra $A(S^k, n)$:

- (a) $[S^k, \mathscr{U}(n)] \cong \pi_k(\mathscr{U}(n)),$
- (b) $G(S^k, 2)/G_e(S^k, 2) \cong \pi_k(\mathcal{U}(2)) \cong \pi_k(S^3)$.

In particular, $\pi_k(S^3)$ is finite and nontrivial if $4 \le k \le 22$.

PROOF. Part (a) is true because both groups have the same elements, S^k is a suspension and $\mathcal{U}(n)$ is an H-space (see [4, p. 44]). The first equality in part (b) follows from the Proposition. The second equality in (b) holds because $\mathcal{U}(2)$ is homeomorphic to $S^3 \times S^1$ [5, p. 129] and so $\pi_k(\mathcal{U}(2)) = \pi_k(S^3) \oplus \pi_k(S^1)$. For k > 1, $\pi_k(S^1) = 0$ [5, p. 111] and if $4 \le k \le 22$, then $\pi_k(S^3)$ is finite and nontrivial [6, pp. 186–188] and so for these k at least $G(S^k, 2)/G_e(S^k, 2)$ is finite and nontrivial.

Note. The result may hold for other k as well, but these are the only values of $\pi_k(S^3)$ given in the reference quoted above.

The algebras $A(S^k, n)$ always have abelian factor groups $G(S^k, n)/G_e(S^k, n) \cong \pi_k(\mathcal{U}(n))$ because $\mathcal{U}(n)$ is an *H*-space [4, p. 44]. The following example of a complex Banach algebra with a nonabelian factor group G/G_e is due to E. Fadell.

EXAMPLE 2. Let $X = \mathcal{U}(2) \times \mathcal{U}(2)$. Then in the algebra A(X, 2), $G(X, 2)/G_e(X, 2) \cong [X, \mathcal{U}(2)]$ is nonabelian.

PROOF. Define the following four maps on $\mathcal{U}(2) \times \mathcal{U}(2)$:

$$f(u,v) = u,$$
 $\varphi(u,v) = (v,u),$ $g(u,v) = v,$ $\mu(u,v) = u \cdot v$

where $(u,v) \in \mathcal{U}(2) \times \mathcal{U}(2)$ and the dot indicates multiplication in $\mathcal{U}(2)$. Then [f] and [g], the homotopy classes of maps from X to $\mathcal{U}(2)$ which are homotopic to f and g respectively, are elements of $[X,\mathcal{U}(2)]$. Suppose $[X,\mathcal{U}(2)]$ is abelian. Then the maps $f \cdot g(u,v) = u \cdot v$ and $g \cdot f(u,v) = v \cdot u$ are homotopic. We denote this by $f \cdot g \sim g \cdot f$. Since $\mu(u,v) = u \cdot v = f \cdot g(u,v)$ and $g \cdot f(u,v) = v \cdot u = \mu \circ \varphi(u,v)$, this is equivalent to saying $\mu \sim \mu \circ \varphi$. Let $\overline{\mu}$ and $\overline{\varphi}$ denote the restrictions of μ and φ , respectively, to $S\mathcal{U}(2) \times S\mathcal{U}(2)$. Then $\overline{\mu}: S\mathcal{U}(2) \times S\mathcal{U}(2) \to S\mathcal{U}(2)$ since $S\mathcal{U}(2)$ is a subgroup of $\mathcal{U}(2)$ and $\overline{\varphi}: S\mathcal{U}(2) \times S\mathcal{U}(2) \to S\mathcal{U}(2) \times S\mathcal{U}(2)$. Thus the above statements imply that $\overline{\mu} \sim \overline{\mu} \circ \overline{\varphi}$. Since $S\mathcal{U}(2)$ is homeomorphic to S^3 , this is equivalent to saying that $\overline{\mu}$ is a homotopy commutative multiplication on S^3 . This contradicts the fact that S^1 is the only sphere which admits a homotopy commutative multiplication [2, p. 192]. Hence $[f][g] \neq [g][f]$ and so $G(X, 2)/G_e(X, 2)$ is nonabelian.

If B and C are Banach algebras with groups H and K and identity components H_e and K_e , respectively, one can form their direct sum $A = B \oplus C$ by adding and multiplying componentwise and letting

$$||(b,c)|| = ||b|| + ||c||$$
 for $b \in B$ and $c \in C$.

If G is the group of invertible elements of A and G_e is its identity component then $G \cong H \oplus K$ and $G_e \cong H_e \oplus K_e$ and so $G/G_e \cong H/H_e \oplus K/K_e$. Thus, one can obtain more complicated groups G/G_e by letting A be, for example, the algebra of all continuous functions from the disjoint union of a sphere S^k ($4 \leq k \leq 22$) and $\mathscr{U}(2) \times \mathscr{U}(2)$ into M_n . Then A decomposes into the direct sum of algebras $A(S^k, n) \oplus A(\mathscr{U}(2) \times \mathscr{U}(2), n)$ and G/G_e is the direct sum of the corresponding factor groups of these algebras. If we let n=2, this process yields an algebra whose factor group G/G_e is nonabelian and has torsion.

BIBLIOGRAPHY

- 1. C. Chevalley, *Theory of Lie groups*. Vol. 1, Princeton Math. Series, vol. 8, Princeton Univ. Press, Princeton, N.J., 1946. MR 7, 412.
- 2. I. M. James, Multiplication on spheres. I, Proc. Amer. Math. Soc. 8 (1957), 192-196. MR 18, 752.
- C. E. Rickart, General theory of Banach algebras, University Series in Higher Math.,
 Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.
 E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 4. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
 5. N. E. Steenrod, The topology of fibre bundles, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N.J., 1951. MR 12, 522.
- 6. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N.J., 1962. MR 26 #777.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706