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1. A question. One sometimes constructs a family of algebras (e.g. 
various group algebras) and then hopes to prove that all its members have 
zero radical. If this is false, then one may attempt to describe the radicals 
that occur. Here we discuss the reverse process. Encouraged by the dictum 
'When you have a lemon, make a lemonade,' we identify the following 
problem. Given a nonzero nilpotent algebra AT, describe the set of unital 
algebras A satisfying the equation 

(1.1) rad,4 = iV 

{together with a certain nontriviality condition', see (2.1)). If the underlying 
scalar field k is perfect, then the Wedderburn Principal Theorem implies 
that (1.1) is equivalent to the search for semisimple S whose multiplication 
"associates" with that of N so that the semidirect sum 

(1.2) A = N + S 

is associative (and has no "useless" semisimple ideal summands; see 
(2.1)). Thus we are curious about nontrivial extensions of the trivial process 
of adjoining a unit to an algebra that lacks one. 

Some basic intuitions about (1.2): (a) If S is to be complicated, then 
the given N should be relatively uncomplicated. For instance, if S has 
orthogonal idempotents ea,efi9 then the subspace e^-N-e^ must have 
zero square (very uncomplicated). (Is there a conservation law?) (b) If a 
more complicated ("generic") nilpotent algebra associates with the semi-
simple 5, then every less complicated nilpotent specialization should do 
likewise, (c) The collection of maximal S satisfying (1.2) is a reasonable 
structural invariant, yielding insight into the overall decomposability 
of N as an algebra with operators. 

The main results announced here: Theorem (2.6) relating solutions 
S of (1.2) for a fixed N to solutions for its graded form gr N; Theorems 
(3.1) and (4.1), which solve (1.2) in the cases of commutative indecompos­
able N and square-zero N, respectively (see also (6.1) for maximal 5); the 
deformation theorem (5.1) which makes precise our intuition (b) above; 
the stability result (7.2) relating idealhood in N with that in A = N + 5, 
and reducing the general problem (1.2) to the case of indecomposable N ; 
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the "uniqueness of maximal solutions" conjecture (6.3) for indecomposable 
noncommutative JV ; an upper bound (6.2) on the size of solutions S in 
terms of the number of generators of JV. We mention some further direc­
tions (fiber products, partial orderings) in the final section. 

ADDED IN PROOF. Professor Marshall Hall, Jr. discussed algebras 
"bound to the radical" in Trans. Amer. Math. Soc. 48 (1940), 391-404. 

2. Definitions and a basic lemma. Throughout JV ± (0) is a finite-
dimensional nilpotent associative algebra of nilindex v (minimal equation 
JVV+1 = (0)) over the field fe, and S is a finite-dimensional semisimple 
fe-algebra. We take k algebraically closed, so that all solutions to (1.1) 
with JV — (0) (the homogeneous case) are known. Moreover, the fc-space 
JV is an S-bimodule via a representation G of the enveloping algebra 

a:Se = S®kS
op->LmkN. 

Thus we write a(a <g) ft)x = (a • x) • b = a • (x • b) for all a, b in S and x in JV. 
(2.1) We say that N accepts (S, a) as a nowhere trivial Wedderburn factor 

(briefly, JV accepts S) provided, for all a, b in S and x, y in JV, we have 
Associativity, a • (xy) = (a • x)y, x(a • y) = (x • a)y, (xy) • b = x(y • b) ; 
Nowhere triviality, a • N = (0) implies N - a j= (0), unless a = 0. 

Having this, we obtain a solution ,4 = N + 5 to (1.1) and (1.2). The 
nowhere triviality requirement prevents N from accepting arbitrarily 
large S (cf. (6.2)). 

(2.2) If N accepts both (S, a) and (7^ T), then these are strongly equivalent 
if there are fe-algebra isomorphisms f:S -• Tand 0 :N -+ N such that 

(0 o a(a ® b))x = ((T O ƒ *(a ® ft)) o 0)x 

for all a, ft in S and x in N. Strongly equivalent factors (5, a) and (7̂  T) 
give rise to isomorphic algebras A = N + S and B = N + T. 

Note. The same S may operate in inequivalent ways on JV and thereby 
give rise to nonisomorphic algebras. See §4. 

(2.3) EXAMPLE. Let JV be the nilpotent algebra of all strictly upper 
triangular n by n matrices over k. Then JV accepts precisely those (S, a) 
which are strongly equivalent to a pair consisting of a subalgebra (same 
unity) of the algebra of all n by n diagonal matrices and its natural action 
on JV. Note here that if dimk JV = 1 (n = 2), then JV admits just two 
inequivalent Wedderburn factors, of dimensions 1 and 2. 

(2.4) EXAMPLE. Let JV be the truncated polynomial ideal generated by 
/c-independent possibly noncommuting elements x 1 ? . . . , x m such that 
every monomial of degree ^ v + 1 reduces to zero. Then JV accepts (5, o) 
only if S is the field k • 1, with the single trivial exception m = v = 1 noted 
in (2.3). 
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(2.5) BASIC LEMMA. If N accepts (S, cr) as a nowhere trivial Wedderburn 
factor, then each quotient algebra N/N\ with 2 ^ i ^ v + 1, accepts 
(S, at), where at is the usual induced representation of Se. 

Note that the subalgebras N2,... ,NV need not accept (S,a) nowhere 
trivially, even if N itself does. See (2.3). 

The result about N/N2 prompts our study (§4) of square-zero nilpotent 
algebras. 

(2.6) THEOREM. If N accepts (S, a) as a nowhere trivial Wedderburn 
factor, then its associated graded algebra gr N = (N/N2) © (N2/N3) © 
• • • © AT accepts (S, a'), where a' is the representation induced from a. 

Nowhere triviality for (S, a') follows from (2.5) for N/N2. 

(2.7) COUNTEREXAMPLE. The converse to (2.6) is false. For let N be 
generated by commuting elements x, y with minimal relations x4 = 0, 
y2 = x3, xy = 0. Note dimk N = 4. One checks that N accepts only the 
1-dimensional semisimple S = fc-1. On the other hand, gr N ^ 
<£, Ç2, £3> © <rç> (gr iV-direct), with £4 = rj2 = 0, and one readily sees 
that gr N accepts 1-, 2- and 3-dimensional Wedderburn factors. 

3. Commutative nilpotent algebras as radicals. The following result can 
be applied to the problem of computing the algebras with a given com­
mutative radical. 

(3.1) THEOREM. Let k be algebraically closed, and suppose given a 
commutative nilpotent k-algebra N which is N-indecomposable. Then either 
N reduces to a line (and see (2.3)) or else N2 > (0) and N accepts the field 
k • 1 but no other semisimple k-algebra, commutative or not. 

4. The Wedderburn factors for the square-zero algebra. This case is 
important because of the necessity result (2.5) concerning the square-zero 
quotient algebra. 

(4.1) THEOREM. Given N £ (0) with N2 = (0). Let S = Sx © • • • © Ss 

where Sa is isomorphic to the simple algebra of all ra by ra matrices over k. 
Then N accepts (S, a) as a nowhere trivial Wedderburn factor iff there exist 
nonnegative integers X^for a, /? = 1,.. . , s satisfying 

(i) Z Z rJCafirfi = dimkN, (ii) £ (XaP + Xpa) > 0, all a. 
* fi fi 

This follows from a consideration of the Peirce decomposition of N 
effected by the unity elements of the Sa. In particular, XaP = multiplicity 
of the irreducible Sa ® S°p

v representation in a. 
Note that if dimk N = rxr2 then N may serve as the "upper right-hand 
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block" in the algebra of all (rx + r2)-square matrices with lower left-hand 
block zero (cf. s = 2). 

5. Generic deformations and their Wedderburn factors* The nilpotent 
generic member JVf of a one-parameter family of deformations of JV is an 
algebra over the power series field k((t)) which specializes to N when t = 0. 
See Gerstenhaber's treatise (Ann. of Math. 79 (1964), 59-103) for details. 
Roughly speaking, the deformation Nt will be less degenerate than N. 
For instance, if AT is a square-zero algebra and B any k-algebra of the 
same dimension, then there is a deformation Nt isomorphic over k((t)) 
to the scalar extension Bkm = B((t)). Thus the next result is intuitively 
appealing. 

(5.1) THEOREM. If a generic deformation Nt of N accepts the semisimple 
S((t)) as a nowhere trivial Wedderburn factor over k((t)), then N must accept 
S over k. 

One can re-obtain (2.6) using (5.1) and the fact that a filtered algebra 
is a (nongeneric) deformation of its associated graded algebra. 

6. The question of maximal Wedderburn factors for N. Since semisimple 
subalgebras of accepted (S, a) are also accepted, it is the family of maximal 
Wedderburn factors which conveys essential information about N. We 
say (S, a) is maximal if every monomorphism f:S -» Twith a = T o ƒe is an 
isomorphism. Here (T, T) denotes a Wedderburn factor accepted by N. 

(6.1) THEOREM. Let N2 = (0) and S = Sx ® • • • 0 Ss as in (4.1). Then 
the following are equivalent: 

(i) (5, a) is a maximal Wedderburn f actor f or AT; 
(ii) s is even and, after re-indexing, N — ®Sj/ilS2j-1 • N • S2j, with each 

summand a simple (S2j-1, S2j)-bimodule ; 
(iii) s is even and, after re-indexing, the multiplicity matrix (Xafi) of 

(4.1) reads 1,0,1,0,1,.. .,0,1 down the principal superdiagonal with 0's 
elsewhere. 

(6.2) THEOREM. If N (arbitrary) accepts S as a nowhere trivial Wedderburn 
factor, then dimkS S y2 + 1, where y = number of generators of N = 
dimk(N/N2). 

(6.3) Open question. If N is indecomposable, is there a unique maximal 
nowhere trivial Wedderburn factor accepted by Nl For evidence, see 
the commutative theorem (3.1), the strict upper triangular matrices (2.3), 
and (2.4). This question is important in the light of the reductions below. 

7. Decomposability of N and maximality of 5. These next results allow 
us to concentrate on indecomposable nilpotent algebras. 
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(7.1) THEOREM. Let JV =(+)^ (ideal direct sum). If Til) is a maximal 
Wedderburn factor for Pu then S =(J)T(l) is a maximal Wedderburn factor 
forN. 

We say that JV is reduced if it has no proper square-zero JV-ideal direct 
summands. 

(7.2) THEOREM (STABILITY OF SUMMANDS). Let JV = ®P f (ideal direct 
sum) accept S, thereby forming the unital associative algebra A = JV + S. 
Then 

(a) each Pf is an A-ideal (although Pt need not be) ; 
(b) if N is reduced, then also JV decomposes as @Ôi with Qt cz. Pi9 

Qf = Pf, and each Qt an A-ideal ; 
(c) if S is maximal for JV (reduced), then S =(+)T(0 where T(i) is a maxi-

mal Wedderburn f actor for Qt. 

Note that (b) and (c) are false for square-zero algebras of dimension 
^ 2, and also that (c) requires maximality. 

8. Further observations and questions. Our chief unanswered question 
is (6.3). We also mention 

(8.1) Which (indecomposable) JV admit only the trivial Wedderburn 
factorS = fc-l?Cf. (3.1). 

(8.2) Fiber products in the Wedderburn family. We have been able to 
define fiber products of Wedderburn factors (S, a) and (T9 T) over Linfc JV 
in certain cases. These would be of greater interest if the answer to the 
uniqueness question (6.3) is negative. In this event the partial ordering on 
the family of (S, <r) must also be studied. 
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