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This announcement is a continuation of Greene-Wu [1]; we shall 
present additional theorems relating curvature to function theory on 
noncompact Kâhler manifolds. The first theorem improves Theorem 3 
of [1]. 

THEOREM 1. Let M be a complete simply connected Kâhler manifold 
with nonpositive sectional curvature such that, for some 0 e M, 

\sectional curvature (p)\ ^ C(d(0,p))~2~8 

for some positive constants C and s, where d is the distance function 
associated with the Kâhler metric; then M admits no bounded holomorphic 
functions. 

This theorem is false if e ^ 0. Indeed, on the unit disc, the Kâhler 
metric (1 — zz)~ndzdz (where n is any integer ^ 3) is complete and its 
curvature function K satisfies K < 0 and \K(z)\ S C(d(0, z))~2. (0 = origin 
ofC.) 

The next theorem and its corollary provide information about the 
absence of holomorphic p-forms (p ^ 1) when the manifold is positively 
curved. For compact M, the result was known (Kobayashi-Wu [6]). 

THEOREM 2. Let M be a complete Kâhler manifold of positive scalar 
curvature; then M possesses no holomorphic n-form in Z? (n = dim M). 
If the eigenvalues rl9 ...,rn of the Ricci tensor satisfy 

rt + ... + rt > 0 for all ii < ... < ip9 

then M admits no holomorphic p-form in L2. 

COROLLARY.(A) If M is a complete Kâhler manifold with positive Ricci 
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curvature, then M admits no holomorphic p-form in li (1 ^ p ^ dim M). 
(B) If M is a domain in Cn which admits a complete Kâhler metric of positive 
scalar curvature, then M must have infinite Lebesgue measure. 

The next two theorems are concerned with the existence of holomorphic 
functions. 

THEOREM 3. Let M be a complete Kâhler manifold with positive Ricci 
curvature and nonnegative sectional curvature. Furthermore, let L be a 
holomorphic line bundle on M with nonnegative curvature. Then HP(M, &(L)) 
= 0forp^ 1. 

COROLLARY. (A) Let M be a domain in Cn which admits a complete 
Kâhler metric of positive Ricci curvature and nonnegative sectional curva­
ture; then M is a Stein manifold. (B) Let M be a complete noncompact 
Kâhler manifold with positive sectional curvature; then all the first and 
second Cousin problems on M are solvable. 

Some comments on this theorem follow. First, if M is compact, then 
this is a special case of Kodaira's vanishing theorem. Second, if the 
sectional curvature of M is actually positive, then one can even show 
HP(M, 0(T(/i) ® L)) = 0 where L is as above and T™ denotes the /ith 
symmetric power of the holomorphic tangent bundle of M (fi ̂  0). When 
M is compact, this statement is a special case of a general theorem due 
to Griffiths [3, p. 212, Theorem G']. Third, we conjecture that a non-
compact complete Kâhler manifold M of positive curvature is a Stein 
manifold.2 We have proven this fact if M in addition possesses a pole, 
i.e. an m e M such that expm : Mm -+ M is a diffeomorphism. Fourth, 
the proof of Theorem 3 hinges on a technical lemma which has the 
following easily stated consequence : every convex function on a Kâhler 
manifold is plurisubharmonic. (A function on a Riemannian manifold is 
convex if and only if its restriction to each geodesic is a convex function 
of one variable.) This fact, which is so easy to prove when the Kâhler 
manifold is Cn, turns out to be surprisingly subtle in the general case 
(see the forthcoming paper of Greene-Wu [2]). 

For the statement of the next result, we need some notation. Let A(M) 
be the algebra of holomorphic functions on M, let Q be the volume form 
of M and let p be the distance (relative to the Kâhler metric) from a 
fixed point OeM. 

THEOREM 4. Let M be an n-dimensional complete simply connected Kâhler 
manifold whose sectional curvature is bounded between -d2 and 0. Then 
for any C2 plurisubharmonic f unction (p on M, the set 

2 We have now proven this conjecture. 
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LeA(M): | |w|2(l + p2f exp{~(2n - l)d2p2 - <p}Q 

< oo for some integer N 

is dense in A(M). If M satisfies also —d2^ sectional curvature ^ 
— c2 < 0, then the set 

JM 
ueA(M): |w|2(l + p2)"1 exp { -(2w - l)d2p2 - <p}Q < oo 

JM 

is already dense in A(M). 

The first half of this theorem was essentially known to P. A. Griffiths 
(private communication); in the case d = 0 and hence M = C\ the 
theorem is due to Hörmander [4, p. 119]. 

The next theorem is concerned with boundedness properties of the 
solutions of Su = ƒ Again, the theorem is due to Hörmander if d = 0 
([4, p. 107], [5, p. 92]). Let us first explain the notation to come. For a 
continuous function q> on M and for an open subset D of M, we define 

L2
(pq)(D, (p) = < f'.f is a measurable (p, q) form on M such that 

f | ƒ | V O < oo J. 

2
(p,,)(Aloc) = | ƒ : ƒ is a measurable (p, g) form on M such that 

|ƒ |2Q < oo for any compact C ^DV 

THEOREM 5. (A) Let M be a simply connected complete Kâhler manifold 
of dimension n such that —d2^ sectional curvature ^ 0. Let D be a bounded 
pseudoconvex open set in M9 let S be the diameter ofD relative to the Kâhler 
metric and let (p be a plurisubharmonic function in D. For every 
feL2

(0tq)(D,(p\ q>0, with df=0, one can then find usÜ^^-^D.cp) 
such that du = ƒ and 

q f \u\2e~m ^ (iô2 exp(l + \{2n - \)d2ô2)) f | ƒ | V f l 

(B) Let M be as in (A). Let q> be any C2 plurisubharmonic function on M 
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and for a positive integer q, let (f> = q> + (2n - l)qd2p2. If g e L(
2
0f€)(M, q>) 

such that dg = 0, then there exists weL2
(0^_1)(M, loc) such that du = g 

and 

2 f \u\2e~*{l + p2)_2Q S 
JM 

\g\2e-*£l. 
M 

Finally, we give an improved version of Theorem 4 of [1]. First, we 
give a new definition of pseudo-Hermitian metrics. On a complex manifold 
M, g is called a pseudo-Hermitian metric if and only if (1) g is a continuous 
Hermitian bilinear form on M, (2) g is a C2 Hermitian metric outside a 
proper subvariety S. The emphasis here is that g is only required to be a 
continuous tensor on M and that in specific examples, g will definitely 
fail to be differentiable on the singularity set S. By the Ricci curvature or 
holomorphic sectional curvature ofg, we mean that of g restricted to M — S. 

THEOREM 6. A pseudo-Hermitian metric with nonpositive Ricci curvature 
on C1 must satisfy 

lim sup | z \2(Ricci curvature (z)) > — oo. 
|z|-oo 

(Here9\z\2 = ZUiZiZi.) 

COROLLARY. For n > 1, every pseudo-Hermitian metric on C1 must 
satisfy 

lim sup \z\2(holomorphic sectional curvature (z)) > — oo. 
|z|-oo 

It remains to point out that Theorem 6 is false for an exponent > 2 
Indeed, the pseudo-Hermitian metric (1 + \z\ô)dzdz on C (where ô is any 
positive constant) satisfies 

lim \z\2 + 3a(curvature(z)) = -oo. 
|z|-oo 

(We take this opportunity to rectify some errors in [1]. (A) Theorem l(iii) 
should be amended to read: If sectional curvature ^ - c 2 < 0, then 
ddcp2 ^ (4 + 2cpcothcp)co, ddclog(1 -f p2) > 0 and outside {m:p(m) 

ddc log (1 + p2) ^ 2{ pc coth pc - 1}/(1 + p2) 

where coth denotes the hyperbolic cotangent. (B) The conclusion of 
Theorem 2(ii) should be 

J. [f\pcor ^ Df exp{(2n - l)1/2cr} 
Sr 
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for r ^ 1 and for some Df which is independent of r and is positive if 
ƒ (0) * 0.) 
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