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In this paper we obtain estimates for the decrease at infinity of the 
Szegö and Poisson kernels, Sr(X, Y) = Sr;X(Y) and Pr(X, Y) = Pr;X(Y) 
= \Sr(X, Y)\2\\ST;X\\2 2, associated with proper cones T <= Rn which are 
sufficiently smooth and satisfy certain curvature conditions. These estim­
ates verify, for these cases, the conjecture of Stein (see [2], [4]) that the 
Poisson integral of an L1 function converges restrictedly almost every­
where to that function on the distinguished boundary of a tube domain 
(Corollary IA). These and other results about the Poisson kernel will be 
elaborated on in [1]. 

Let T be a proper cone of Rn (that is, a nonempty, open, convex cone 
whose closure contains no whole line), T* its dual cone 

(1) T* = {YeRn:(X9Y)>0\/XeT - {0}}, 

which is also proper, and Q = Qr its tube domain 

(2) Q = T x iRn = {ZeCw:Re(Z)er}. 

For XeF define the nonempty compact section CT*X = C$ of F* as 
follows: 

(3) d = {Y€r*:(X,7) = 1} cz {Y:(X9Y) = 1} « Rnl; 

and similarly for Cr;y = Cy, Ye T*. 
We will say T is CN, N ^ 0, if dCY is CN. T will be said to satisfy the 

"flat curvature condition" if for some proper circular cone A of Rn and 
every PedT there is a rotation pP oîRn such that P e d(pPA) and pPA c r. 
The dual condition, the "sharp curvature condition," is stated similarly 
but reverses the last inclusion. We exclude, in our theorems, the trivial 
cases n = 1,2. 

THEOREM I. Suppose F is a proper cone ofRn
9 where 

(a) n = 3 and F satisfies the flat curvature condition, or 
(b) n ^ 4, r is C[n/2], and T satisfies the sharp curvature condition. 
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Then, if we define mr on Rn by 
mr(7) = l tf\Y\£l9 

(4) = |y|-»/2{max |-1>dis t(y )ar u -ar)]}" 1 / 2 if \Y\ ^ 1, 

there exists for every compact S a F a constant k = ks < oo such that 

(5) \Sr,x\^kmr VXeS, 

and hence k2 = k2(S) < oo such that 

(6) PT,x^k2ml VXeS. 

COROLLARY I A. If T satisfies the conditions of Theorem I andfeÜ(Rn)9 

and we define the Poisson integral off by 

(7) Pf (X + iY) = (Pr;x * ƒ ) ( Y), X 6 T, Y e iT, 

f/ien /or almost every Y0eR\ Pf(Z)-+f(Y0) as Z converges to iY0 

restrictedly in £2r. 

(We say Z-+Z0 restrictedly in Q if {Z} c Q, Z0 € Ü9 Z -> Z0, and for 
some 5 > 0, dist(Z, dCl) ^ <5|Z - Z0| VZ.) 

With a little more smoothness we attain an estimate which is the best 
possible, even for a circular cone (see [4]): 

THEOREM II. Suppose n ^ 3 and T isaC proper cone ofR1 satisfying the 
sharp curvature condition. Then the conclusions of Theorem I hold with 
mr(Y) replaced by 

fir(Y) = l if\Y\SU 

(8) = |y|-»/2{max[l,dist(y,dru -3r)]}-" / 2 \f\y\ ^ 1. 

SKETCH OF PROOFS. Since every C2 proper cone satisfies the flat curvat­
ure condition, the hypotheses of Theorem I imply T* satisfies the sharp 
curvature condition and is Cin,2] if n ^ 4, while those of Theorem II 
imply r* satisfies the sharp curvature condition and is Cw. These imply 
similar conditions for the C$, uniformly for X e S. 

The crucial step is the radial integration of the usual formula for the 
Szegö kernel, which (see [2]) gives, for Sx = Sr;X, 

(9) «"-5^,0+ «•»"•*. 
where da is induced Lebesgue measure on the affine hyperplane 
{a:{X,a) = 1}. If we set K{X) = (n - 1)!/(2jt)"|X| we get that, for p # 0, 

(10) Sx(pY) = ^ { (l/p + i(Y,a)r»da. 
P Ja 
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In Theorems I and II, the estimate is immediate for \Y\ ^ 1; thus, in 
(10), we may take |1T| = 1 and p ^ 1. Then a gross estimate, using only 
the sharp curvature condition for T*, yields the estimate of Theorem II 
for YeTu - F . For the case p ^ 1, \Y\ = 1, Y<£ T u - T , we use Fubini's 
theorem on (10) to get 

(11) Sx(pY) = ^ fb (1/p + ty)-*0{y) dy 

where K2 = K2(X, Y), a = a(X, Y\ and b = b(X, Y) are continuous, a < 0 
< ft, [o,6] = (Y,C$\ and %) = 0(X, Y,y) = A»-2({(7GQ:(y5(7) = y}) is 
smooth on (a, b) to the same degree as T*, continuously in X and Y. 
Aw~2 is induced Lebesgue measure. 

The results of Theorem I and II, and intermediate estimates for interme­
diate degrees of smoothness, now follow straightforwardly (except for 
some complications for \a\ or \b\ small) if we approximate 9 at y = 0 by a 
polynomial 0, do a contour integration on the analytic integral with the 
contour passing below the origin, and estimate the remainder term 
crudely. The hypothesis "C*" could, for greatest generality, be replaced 
by "uniformly Lipschitz JV — 1 order derivatives", which explains the 
apparent anomaly of Theorem 1(a). 

Corollary IA follows in the usual manner, by showing that the maximal 
operator M = M{z} sending ƒ into Mf(Y) = sup{Z}{|P/(Z + iY)\} is 
weak-type (1,1) if 35 > 0 such that Ze{Z) => dist(Z, C" - Q) > S\Z\. 
It suffices to show jQf is weak-type (1,1), where Mf{Y) 
= sup,>0(m?.? * \f\)(Y) and m\ Ô(Y) = o~nm*(Y/o).This result follows,as 
in [2], by majorizing ml in the natural fashion by a sum of multiples of 
characteristic functions of rectangles centered at 0, and applying 2.3 of [5]. 
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