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Let M be a C00 compact manifold without boundary. Let ƒ e Diff (M), 
1 ^ r ^ oo. ƒ is structurally stable in Diff (M) if there exists a neighbor­
hood Uf of ƒ in Diff (M) such that given g e Uf there exists a homeo-
morphism h:M -* M such that hf = gh. The structurally stable diffeo-
morphisms are known not to be dense in Diff (M), unless M is the circle 
(see [4], [5], etc.). On the other hand I will prove below the mixed result 
that the structurally stable diffeomorphisms are always dense in Diff (M) 
with the C° topology. The main tool is the theorem of Smale [6], that 
every diffeomorphism is isotopic to a structurally stable diffeomorphism. 
Theorem 2 improves this theorem by producing an isotopy which is 
arbitrarily small in the C° topology. I expect to prove a corresponding 
theorem for vector fields with M. W. Hirsch. It is a pleasure to acknowl­
edge helpful conversations with M. W. Hirsch and S. Smale. Let 
m = dim M. 

THEOREM 1. Let 1 ^ r ^ oo. Then the structurally stable diffeomorphisms 
are dense in Diff (M) with the C° topology. 

A sharper version of this theorem is 

THEOREM 2. Let 1 ^ r S oo. Let f e DifT(M). Then ƒ is C isotopic to 
a structurally stable diffeomorphism g by an isotopy which is arbitrarily 
small in the C° topology. 

The following proposition is actually part of the proof of the main 
theorem of [6]. 

PROPOSITION (SMALE). Let f e Diff (M). Let M = Hmi> flm-i=> • • • 
3 Hx z> H0 be a handle body decomposition of M (corresponding to a 
"nice" Morse function). Suppose f(Ht) c interior Ht for all I Then ƒ is C 
isotopic to a structurally stable diffeomorphism. 

The proof of this proposition in [6] is essentially complete, one need 
only take a little care in keeping track of the stable and unstable manifolds. 
Also, the C° size of the isotopy may be made small if the ï-handles, 
0 ^ i ^ m, are small. 
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Smale fixes a handle body decomposition of M and isotopes any ƒ 
to satisfy the hypotheses of the proposition. The idea for Theorem 2 is 
to pick a fine handle body decomposition so that this first isotopy may 
also be made C° small. 

PROOF OF THEOREM 2. Let T be a triangulation of M with small mesh 
(see [2]). Let Th 0 <; i» ^ m, be the i-skeleton of 7: /(T^^ misses a 
point in the interior of each m simplex. By pushing away from this point 
we may isotope ƒ such that /(7^_!) is contained in an arbitrarily small 
neighborhood of Tm_1. By downward induction we may isotope ƒ to g 
so that 0(7*) is contained in an arbitrarily small neighborhood of Ti9 

0 ^ i ^ m — 1. Now think of a small neighborhood U0 of T0 as the 
0-handles of a handle body decomposition of M, a small neighborhood 
C/x of Tt — U0 as the 1-handles, etc. Make Ut so small that the g{U^ are 
already contained in prescribed small neighborhoods of the Tt. Now by 
upward induction on i we may further isotope g to preserve this handle 
body in the sense of the proposition. The C° size of the isotopy depends 
only on the mesh of T and m. 

Combining this theorem with [1] and [3], we see 

THEOREM 3. Let 1 ^ r < oo. Then there exists an open and dense set 
U c DifF(M) with the C° topology and a dense set of structurally stable 
diffeomorphisms Va 17, such that the diffeomorphisms in V are locally 
minimizing for the topological entropy of the diffeomorphisms in [7. 

This theorem may be of some interest to ecologists and others who 
sometimes try to achieve stability by maximizing the entropy. 
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