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We announce the following result.

THEOREM. Suppose X is a complex manifold, A is an analytic subset of X
of codimension = 1, and G is an open subset of X which intersects every
branch of A of codimension 1. Suppose V is a semipositive holomorphic
vector bundle over (X — A)U'G (i.e. V carries a hermitian metric with
positive semidefinite curvature form). Then the sheaf O(V) of germs of holo-
morphic sections of V can be extended uniquely to a reflexive coherent
analytic sheaf over X.

COROLLARY. If dim X = 2, then V can be extended uniquely to a holo-
morphic vector bundle over X.

The special case where A has codimension = 2 and V is a line bundle
was proved by Shiffman [3], [4]. An alternative proof of Shiffman’s line
bundle result was given by Harvey [1] whose proof works also when
A is an arbitrary closed subset of X with Hausdorff (2dim X — 3)-
measure 0.

Our Corollary implies a theorem of Thullen [6, Satz 2], because, in a
special case general enough to give the general case, the line bundle
associated to the analytic subset of codimension 1 which is to be extended
is semipositive.

The proof of our Theorem follows from Hormander’s I? estimates for
the 0 operator [2] and the easy part of the usual sheaf-extension tech-
niques (see e.g. [S] and related papers listed in the bibliography there). Let
A, ={zeC||z| <r} and A = A,. We outline here the proof of our
Theorem for the special case where X = A x A, A=A x {0}, and
G=A; xA

Fix arbitrarily 1 < r < 1. Let f},..., f be holomorphic sections of
Vover A x (A — {0}) generating O(V) there. Take arbitrarily ce A — {0}.
Let p = p(z,) bea C* function on A — {0} with compact support such that
p =1 on a neighborhood of ¢. Since (z, — ¢)~'0(pf;) | A, x (A — {0}) has
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finite I?-norm with respect to the given metric h of ¥, by Hérmander’s
method we can find a C* section g; of V over A, x (A — {0}) such that
g; has finite I?-norm with respect to h and dg; = (z, — ¢)~'0(pf)). It is
well known that a holomorphic function defined outside an analytic
subset of codimension = 1 can be extended across it if the function is
locally I at every point of the analytic subset. Hence pf; — (z, — ¢)g;
can be extended to a holomorphic section s; of ¥ over (A, x (A — {0}))
U G. The sections sy,...,s, generate O(V) at A, x {c}. Likewise we can
find holomorphic sections of ¥V over (A x (A, — {0})) U (A, x A,) gener-
ating O(V) at A,,, x {0}. The Theorem~for this case now follows from
wellknown easy sheaf-extension techniques.

Theorems on extending semipositive holomorphic vector bundles
across closed subsets with Hausdorff measure conditions can also be
obtained.

Details will appear elsewhere.
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