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1. Introduction. Let (M, g) be a given Kâhler metric on a compact 
manifold M of complex dimension N. If one denotes the associated volume 
element by dV and the scalar curvature by kg9 then it is known [1, p. 118] 
that c(M) = )M kg dVg is a Kâhler invariant (i.e. is independent under 
Kâhler deformation of the particular Kâhler metric g defined on M). 
Here we give some results on the following problem : 

(%) Find necessary and sufficient conditions on a Holder continuous 
function K(x) defined on (M, g) such that K{x) is the Hermitian scalar 
curvature of some Hermitian metric g on M conformally equivalent to g. 

If N = 1, this problem was studied by the author in [2], and subsequently 
in [3] by Kazdan and Warner. However the methods used in these papers 
depend crucially on the fact that N = 1. Indeed, certain calculus in­
equalities for the functions u in the Sobolev space W1>2(M9 g) are required, 
that hold in case N = 1 but not otherwise. 

2. The main result. We seek a smooth real-valued function u(x) defined 
on (M, g) such that the Hermitian scalar curvature k$(x) of M with respect 
to the Hermitian metric g = e2ug is the given function K(x). By means of 
the results of Chern [4], and Chavel [5], the function u(x) is a solution 
of the semilinear elliptic equation 

NAu - kg(x) + K(x)e2u = 0 

where A is the Laplace-Beltrami operator relative to (M, g). By integrating 
(1) over M, we find that a necessary condition for the solvability of (1) 
is that 

- ƒ c(M) =~ kix)dVg = K{x)e2udVa. 

By the remarks of the Introduction, this relation is invariant under 
Kâhler deformation of g9 and is an analogue of the Gauss-Bonnet formula 
for AT = 1. As in [2], (2) may be used to formulate isoperimetric variational 
problems whose solutions (if they exist) satisfy (1). However, if N > 1, 
the solvability of these isoperimetric problems is in question, so an 

AMS 1970 subject classifications. Primary 35J20, 53A30. 

Copyright © American Mathematical Society 1972 

734 



HERMITIAN STRUCTURES OF PRESCRIBED SCALAR CURVATURE 735 

alternative approach is required. Nonetheless one can prove the following 
results for the problem (%) : 

THEOREM 1. Suppose c(M) < 0, then a sufficient condition for the sol­
vability of (1) is that the Holder continuous function K(x) be nonpositive 
but not identically zero. A necessary condition for the solvability of (1) is 
that J K(x)e2yv dVg < 0 where w satisfies 

NAw = kJLx) - lvol(M9g)y1c{M). 

COROLLARY 2. Suppose c(M) < 0, then any Holder continuous non-
positive and nonidentically vanishing function is the Hermitian scalar cur­
vature for a Hermitian metric g conformai to g. 

IDEA OF PROOF OF THEOREM 1. The proof proceeds by first assuming 
kg(x) equals the constant kg s= [vol(M, g)]"1 ƒ kg{x)dVg and $-K(x)dVg 

is sufficiently large. Then the functional 

/(") = 
M 

{iJV|Vu|2 + kg(x)u - \K(x)e2»} dVg 

achieves its infimum over the admissible class C = W12(M9g) (i.e. the 
set of all square-integrable functions over (M, g) which also possess a 
square integrable gradient, Vw), at the element u0 e Wia(M,g) (say). It is 
then shown that the element u0 is smooth and satisfies (1) by showing that 
ess sup|w0| is bounded over M and applying the regularity theory for 
linear elliptic equations. The general case is then reduced to this special 
case above by writing a tentative solution of (1) w = u + v where u 
and v satisfy the system : 

NAw - JE, + Ke2ve2u = 0, 

NAv - fe^(x) + kg = 0. 

Clearly, since v is uniquely determined only up to an additive constant 
by (4), equation (3) satisfies the hypotheses of the special case just discus­
sed. 

The necessary condition of the theorem is obtained as in [3], by multi­
plying the equation (1) by e~2u

9 integrating over M and integrating by 
parts, in case kg(x) = const. In the general case, we repeat this argument 
for equation (3). 

REMARK If K(x) = 0, then it is standard to show that (1) is solvable 
if and only if ƒ kg(x) dVg = 0. 

ADDED IN PROOF. Recent results of Kazdan and Warner indicate 
that the conclusion of Corollary 2 may be extended to read : any Holder 
continuous function, negative at some point of M is the Hermitian 
scalar curvature for a Hermitian metric conformai to g provided conformai 
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equivalence is understood in a sense more general than the pointwise 
notion used here. 
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