THE FUNDAMENTAL FORM OF A FINITE PURELY INSEPARABLE FIELD EXTENSION

BY MURRAY GERSTENHABER¹

Communicated December 8, 1971

The purpose of this note is to show that to every finite purely inseparable field extension K/k there is associated in a natural way a symmetric cochain $f: K \times ... \times K$ (y times) $\to K$ of K with coefficients in itself which we call the "fundamental form" of K. Its degree, γ , depends on certain structural properties of K. The fundamental form is a derivation when considered as a function of any one variable, all others being held fixed. (It is almost always a coboundary when viewed as a function of all variables.) If K is a tensor product of two intermediate fields then its fundamental form is a certain symmetric product of the forms of the intermediate fields. A weak converse is known and a strong one conjectured.

References in this note to Nakai are to [4] and [5], those to Keith are to [3].

1. Definition. Let A be a commutative k-algebra, set $Y^1(A) = \text{End}_k A$ and for every n > 1 let $Y^{n}(A) = Y^{n}$ be the set of those n-cochains f of Awith coefficients in itself which are symmetric as functions of all n variables and which have the property that if all but two variables are fixed then f is a two-cocycle when considered as a function of the remaining ones. If $f \in Y^n$, then the n+1-cochain Δf defined by $\Delta f(a_1, \ldots, a_{n+1}) =$ $a_n f(a_1, \ldots, a_{n-1}, a_{n+1}) - f(a_1, \ldots, a_{n-1}, a_n a_{n+1}) + a_{n+1} f(a_1, \ldots, a_n)$ is in Y^{n+1} . This defines the "Nakai operator" $\Delta: Y^n \to Y^{n+1}$. It is easy to verify that for odd n, Δ is identical with the Hochschild coboundary operator δ restricted to Y^n . However, in general, $\Delta^2 \neq 0$ and the Y^i do not form a complex. Those elements of Y^1 which are annihilated by Δ^i are called "ith order derivations" or simply "i-derivations" and form an A-module denoted by \mathcal{D}^i . A 1-derivation is an ordinary derivation of A into itself. If A is unital, which we henceforth assume, then we denote by Y_0^n the submodule of Y^n consisting of those cochains in Y^n which vanish when any variable equals 1. We then have $\Delta Y_0^n \subset Y_0^{n+1}$, and $\mathcal{D}^i \subset Y_0^1$ for all i. If $\varphi \in \mathcal{D}^i$, $\psi \in \mathcal{D}^j$ then their composite $\varphi \psi$ is in \mathcal{D}^{i+j} (Nakai). The space $\bigcup_{i=1}^{\infty} \mathcal{D}^i$ of all "high order derivations" is thus a ring with an increasing filtration. When A is a finite purely inseparable field extension

AMS 1970 subject classifications. Primary 12F15; Secondary 18H15.

¹ The author gratefully acknowledges the support of the NSF through grants NSF-GP-20138 and NSF-GP-29268 with the University of Pennsylvania.

K of k Nakai has shown that $\bigcup \mathcal{D}^i = Y_0^1$, so for some integer γ one has $\mathcal{D}^1 \subset \mathcal{D}^2 \subset \ldots \subset \mathcal{D}^{\gamma} = \mathcal{D}^{\gamma+1} = \ldots = (\operatorname{End}_k K)_0$. In this case we also have that $\varphi \in \mathcal{D}^i$ if and only if $\delta \varphi \in \mathcal{D}^1 \cup \mathcal{D}^{i-1} + \mathcal{D}^2 \cup \mathcal{D}^{i-2} + \cdots + \mathcal{D}^{i-1} \cup \mathcal{D}^1$, a result due to Keith. This gives an alternative inductive definition of "i-derivations" which is meaningful for not-necessarily-commutative rings but which possibly differs from Nakai's for commutative rings other than purely inseparable field extensions. If $\varphi \in \mathcal{D}^i(K/k)$, then it follows from the foregoing that $\Delta^{i-1}\varphi \in \mathcal{D}^1 \cup \mathcal{D}^1 \cup \cdots \cup \mathcal{D}^1$ (i times); in particular, $\Delta^{i-1}\varphi$ is a derivation as a function of any single variable. To these results we here add the following:

THEOREM. If K/k is a finite purely inseparable field extension, and if γ is the least integer such that $\mathcal{Q}^{\gamma} = (\operatorname{End}_k K)_0$, then $\dim_K (\mathcal{Q}^{\gamma}/\mathcal{Q}^{\gamma-1}) = 1$.

It will follow that $\Delta^{\gamma-1}\mathcal{D}^{\gamma}$ is a one-dimensional K-space any generator of which will be called the "fundamental form" of K/k.

2. **Proof of the theorem.** An approximate automorphism of order m ("higher derivation" in the terminology of Jacobson [2]) of a not-necessarily-commutative k-algebra A is a formal polynomial $\Phi_t = 1 + t\varphi_1 + \cdots + t^m\varphi_m$ with $\varphi_i \in \operatorname{End}_k A$ $(1 = \operatorname{id}^A)$ such that

$$\Phi_t(ab) = \Phi_t a \cdot \Phi_t b \mod t^{m+1}$$

for all $a, b \in A$. That is, Φ_t is an automorphism of $A[t]/t^{m+1}$ (cf. [1]). This is equivalent to having

$$\delta\varphi_i = \varphi_i \cup \varphi_{i-1} + \varphi_2 \cup \varphi_{i-2} + \cdots + \varphi_{i-1} \cup \varphi_1, \qquad i = 1, \cdots, m.$$

It follows that φ_i is an *i*-derivation under the inductive definition valid for noncommutative rings. Those *i*-derivations which appear in approximate automorphisms will be called "special". If \widetilde{k} is an extension of the field k and $\widetilde{A} = \widetilde{k} \otimes_k A$ then $\mathcal{D}^i(\widetilde{A}) = \widetilde{k} \otimes_k \mathcal{D}^i(A)$, but the analogous assertion is meaningless for special *i*-derivations since the latter in general do not even form an additive group.

Suppose now that k has characteristic p > 0 and that $A = k[x]/(x^q - \alpha)$ where $q = p^e$ for some e > 0 and α is some element of k. Then A has an approximate automorphism Φ_t of order q - 1 which is completely defined by setting $\Phi_t x = x + t$. This implies that

$$\Phi_t x^m = x^m + \binom{m}{1} x^{m-1} t + \binom{m}{2} x^{m-2} t^2 + \dots + t^m,$$

so writing $\Phi_t = 1 + t\varphi_1 + \cdots + t^{q-1}\varphi_{q-1}$, it follows that φ_i is an *i*-derivation sending x^m to $\binom{m}{i}x^{m-i}$ for all $m \ge 0$. It is convenient to denote this *i*-derivation formally by $D^i/i!$, where D = d/dx. If we include the case i = 0, then $\operatorname{End}_k A$ can be shown to be a free A-module having the $D^i/i!$, $i = 0, 1, \dots, q-1$, as a basis. Since $(\Phi_t)^p x = x + pt = x$, one

has $(D^{i}/i!)^{p} = 0$ for all i > 0. (Writing $i = i_{0} + i_{1}p + i_{2}p^{2} + \cdots + i_{s}p^{s}$ with $0 \le i_{0}, i_{1}, \dots, i_{s} \le p - 1$, one has

$$D^{i}/i! = cD^{i_0}(D^{p}/p!)^{i_1}(D^{p^2}/p^2!)^{i_2} \cdots (D^{p^s}/p^s!)^{i_s}$$

where c is an integer $\neq 0 \mod p$.) The highest order of any derivation in $\operatorname{End}_k A$ is therefore q-1, which is achieved by $D^{q-1}/(q-1)!$.

Let K/k be a finite purely inseparable field extension. By Pickert [6] (cf. also Rasala [7]) there is an extension \tilde{k} (in fact there is a minimal finite one) such that writing $\tilde{A} = \tilde{k} \otimes_k A$ we have

$$\tilde{A} \cong \tilde{k}[x_1]/x_r^{q_1} \otimes \cdots \otimes \tilde{k}[x_r]/x_r^{q_r}$$

where $q_1 = p^{e_1}, \ldots, q_r = p^{e_r}$ for some $e_1, \ldots, e_r > 0$. Denoting the tensor factors of \widetilde{A} by $\widetilde{A}_1, \ldots, \widetilde{A}_r$, we have $\operatorname{End}_k \widetilde{A} = \operatorname{End}_k \widetilde{A}_1 \otimes \cdots \otimes \operatorname{End}_k \widetilde{A}_r$, from which it follows that $\operatorname{End}_k \widetilde{A}$ is generated by 1 and the various $D_i^l/i!$. (Therefore $\bigcup \mathcal{D}^l(\widetilde{A}) = (\operatorname{End}_k \widetilde{A})_0 = \widetilde{k} \otimes (\operatorname{End}_k K)_0$, whence $\bigcup \mathcal{D}^l(K) = (\operatorname{End}_k K)_0$. This concise proof of Nakai's result is due to Keith.) The highest order achieved by any derivation in $\operatorname{End}_k \widetilde{A}$ is that of

$$D_1^{q_1-1}/(q_1-1)! \otimes \cdots \otimes D_r^{q_r-1}/(q_r-1)!,$$

whose order is $\gamma = (q_1 - 1) + \cdots + (q_r - 1)$. Therefore $\widetilde{\mathcal{D}}^{\gamma} = \mathcal{D}^{\gamma}(\widetilde{A}) = (\operatorname{End}_k \widetilde{A})_0$, and $\widetilde{\mathcal{D}}^{\gamma}/\widetilde{\mathcal{D}}^{\gamma-1}$ is a free A-module of rank 1. It follows that $\mathcal{D}^{\gamma} = \mathcal{D}^{\gamma}(K) = (\operatorname{End}_k K)_0$ and that $\dim_K(\mathcal{D}^{\gamma}/\mathcal{D}^{\gamma-1}) = 1$, as asserted by the theorem.

3. Symmetric cup products, conjectures. If f is a symmetric m-cochain and g a symmetric n-cochain of the k-algebra A with coefficients in itself, then we define the symmetric m + n-cochain f * g by setting

$$(f * g)(a_1, \ldots, a_{n+m}) = (m!n!)^{-1} \sum f(a_{\sigma 1} \cdots a_{\sigma m}) g(a_{\sigma(m+1)} \cdots a_{\sigma(m+n)})$$

where the sum is taken over all permutations of $1, \dots, m+n$. This is meaningful regardless of the characteristic. One can verify that if $A=k[x]/(x^q-\alpha)$ then the fundamental form of A can be defined and equals $D\cup D\cup \dots \cup D$ (q-1) times, and that if we have a tensor product of such algebras, A_1,\dots,A_r with fundamental forms f_1,\dots,f_r , then the fundamental form of $A_1\otimes \dots \otimes A_r$ is $f_1*\dots*f_r$. (This is always a coboundary if r>1.) It follows that if a purely inseparable field extension K/k is of the form $K_1\otimes_k K_2$, and if the fundamental forms of the factors are f_1 and f_2 , then that of K is f_1*f_2 . We conjecture conversely that if the fundamental form factors then K is a tensor product. This has been shown if one puts certain stringent additional conditions on the factors, but the general question is open.

We remark finally that the "exponents" e_1, \ldots, e_r of K/k can be determined once $\dim_K \mathcal{D}^i$ is known for $i = 1, \ldots, \gamma$, and these in turn depend

on the Nakai operator Δ . For dim $\mathcal{D}^i/\mathcal{D}^{i-1}=\dim \mathcal{D}^i-\dim \mathcal{D}^{i-1}$ is the number of ways of writing $i = i_1 + \cdots + i_r$ with $0 \le i_l \le q_l - 1$ $(=p^{el}-1)$ for $l=1,\ldots,r$. That is, it is the coefficient of t^i in

$$F(t) = \prod_{i=1}^{r} \frac{1 - t^{q_i}}{1 - t}.$$

Thus, knowing Δ determines F(t), from which the $q_l = p^{e_l}$ can be determined.

REFERENCES

- 1. M. Gerstenhaber and A. Zaromp, On the Galois theory of purely inseparable field extensions, Bull. Amer. Math. Soc. 76 (1970), 1011-1014. MR 42 #1806.
- 2. N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N.J., 1964. MR 30 #3087.
- 3. Sandra Z. Keith, High derivations of fields, Dissertation, University of Pennsylvania,
- Salida Z. Kelin, High aeritations by fields, Dissertation, University of Pellisylvania, Philadelphia, Pa., 1971.
 4. Y. Nakai, High order derivations. I, Osaka J. Math. 7 (1970), 1–27. MR 41 #8404.
 5. Y. Nakai, K. Kosaki and Y. Ishibashi, High order derivations. II, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 17–27. MR 42 #1807.
- 6. G. Pickert, Inseparable Körpererweiterungen, Math Z. 52 (1949), 81-136. MR 11, 313. 7. R. Rasala, Inseparable splitting theory, Dissertation, Harvard University, Cambridge, Mass., 1970.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYL-**VANIA 19104**