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The present authors proved in 1966 that for any cardinal a, if a Haus-
dorff space X is of cardinality >220t then it contains a discrete subspace 
of cardinality >a. The following result shows that this cannot be improved 
(even for completely regular spaces). 

THEOREM 1. Con(ZF) -• Con(ZFC & 2a = a+ & 2a+ is anything reason­
able & there exists a zero-dimensional T2 space X of cardinality 2a+ = 22<* 
which is hereditary ^-separable). 

(A space is hereditary a*separable iff every subspace in it has a dense 
subset of cardinality ^ a.) 

COROLLARY. It is consistent to assume that 2e01 is big and there exists a 
zero-dimensional T2 space in which the number of all open sets is any 
cardinal p with œ^S P < 2m and cf(j8) # co. 

This relates to a problem raised by J. de Groot. 
A space X is called a-Lindelöf if every open cover of it can be reduced 

to a subcover of cardinality ^ a. Z is hereditary a-Lindelöf iff every 
subspace of X is a-Lindelöf. 

THEOREM 2. Let en be a given cardinal number. Then Con(ZF) 
-• Con(ZFC & GCH & 3 zero-dimensional T2 space X so that 

(i) \X\ = a+ and X is hereditary a-Iindelöf; 
(ii) Y a X and \Y\ = a+ imply that the weight of the subspace Y is a+ + ; 

(iii) Y cz X and \Y\ rg a imply that Y is closed and discrete). 

COROLLARY. For any given a, it is consistent to assume that there exists 
a zero-dimensional T2 space of weight a++ in which no subspace has the 
weight a+. 
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