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FROBENIUS AND THE HODGE FILTRATION 

BY B. MAZUR 

The problem of p-adically estimating the number of solutions of an 
algebraic variety over a finite field of characteristic p was initiated by the 
classical result of Che valley-Warning [11]. 

THEOREM. Let G(x1,..., x j be a polynomial with integral coefficients, 
of degree less than n. The number of solutions of 

G(x1?...,xM) = 0 modp 

is divisible by p. 

My aim in this paper, is to explain a conjecture of N. Katz [3], which 
provides quite sharp information concerning this general problem, and 
to indicate some theorems I have obtained which affirm his conjecture, 
under a mild hypothesis. Proofs of these theorems will be contained in [8]. 

1. The Zeta-function of a variety over a finite field Let X0 be a scheme 
of finite type over k = Fr We wish to study Ns, the number of rational 
points of X0 over FqS, for all s > 1. The Zeta-function of X0/k expresses 
this information for us: 

Z(T;X0/k) = e x p ( j £ - ^ | 

Given any "Weil cohomology" in the terminology of Kleiman's survey 
article [6], the Zeta-function may be expressed as an alternating product 
of characteristic polynomials, 

Z(r;X0/fe) = ndet(l-/1.T)<-1»' t l 

i 

where f denotes the endomorphism of H'(X0) induced by/, the qui power 
endomorphism of the structure sheaf of X0. Moreover, if X0 is proper and 
smooth, the Zeta-function satisfies a functional equation with respect to 
a change of variables 
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T-^qd/T 

such that the ith factor in the above decomposition is sent to the (2d — i)th. 
The above decomposition expresses the Zeta-function as an alternating 

product of polynomials whose coefficients lie in the field of coefficients of 
the particular Weil cohomology that we are considering. 

It is conjectured (loc. cit.) that the above decomposition, 

Z(T;X0/k) = YlPtTf-iri> 
i 

has the property that the Pt are polynomials with integral coefficients, and 
they are independent of which Weil cohomology theory one takes. 

This is indeed the case for curves, abelian varieties, surfaces, and smooth 
complete intersections in projective space. 

Let us settle on a smooth proper X0 for the remainder of our discussion. 
Also, for this paragraph, let us speak as if the above conjecture were true. 
Then if a is the reciprocal of a root of one of the Pi9 a is an algebraic integer. 
Moreover, thanks to the functional equation, so is qd/a. We may conclude 
that a is an /-adic unit, for any / ^ p. There remain two questions of an 
adelic nature concerning a. 

(I) "The Riemann Hypothesis:" What are the complex absolute values 
of a and its conjugates? 

(II) What are the p-adic absolute values of a and its conjugates? 

Of course, it is expected that the answer to question (I) lies far deeper 
than an answer to question (II). 

Whereas an understanding of question (I) would lead to (the well-
known) inequalities bounding the number of rational points on X0 over 
k, a determination of (II) would have as a consequence information con­
cerning the number of rational points modulo powers of p over k and 
its extension fields. 

Question (II) has been pursued most vigorously by Dwork, who has 
fashioned a magnificent theory designed to come to an understanding of 
this question in great depth, especially for hypersurfaces. 

I found that a good introduction, for the nonexpert, to the p-adic theory 
of Dwork is to read a beautiful paper of Manin, where the modp theory 
for curves is treated (On the Hasse-Witt matrix of an algebraic curve [7]) 
and then to read Dwork's (A deformation theory for the zeta-function of 
a hypersurface [2]) and Katz's (On the differential equations satisfied by 
period matrices [4]). 

It may also be enlightening to review the classical theorem of Stickel-
berger concerning the p-adic ordinal of Gauss and Jacobi sums, attempting 
to view it as fitting into the tradition of question (II) [13]. 
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It should be evident that if one is to pursue question (II) by a cohomo-
logical theory—by constructing, perhaps, a Weil cohomology—the 
coefficient field should be either the p-adic numbers, or an extension field, 
so that one may make p-adic estimates naturally. 

The first such theory (aside from Dwork's own) was due to Monsky-
Washnitzer, and more recently there have been others: one developed by 
Lubkin, and another, crystalline cohomology, initiated by Grothendieck, 
and developed to a very large extent by Berthelot [1]; for the definitive 
version of this theory, one awaits the publication of his thesis. 

Here is a modest consequence of the recent work of Berthelot: 
Let X/W be proper and smooth, where W = W(k) is the Witt vectors 

of the finite field k. Let X0/k denote the closed fibre. Then the de Rham 
cohomology groups HDR(X/W) depend only on X0 and not on the partic­
ular lifting X of X0 to Wl The Frobenius endomorphism F of X0 may very 
well not lift to an endomorphism of X (indeed, it rarely does); nevertheless, 
it is a consequence of the crystalline theory that one may define a cano­
nical "lifting of Frobenius" F: HDR(X/W) -* HDR(X/W) which is functorial 
in X0/k. 

Moreover, there is a decomposition of the Zeta-function, 

Z(T;X0/k) = n<iet(l - f^Tf^1 

i 

where f£a) is the endomorphism of H^x^ induced by the ath power of 
the 'canonical lifting of Frobenius', where q = pa. 

It is this theory of Berthelot that we wish to use to examine question 
(II), which we now paraphrase: 

QUESTION. Let F denote the 'canonical lifting of Frobenius' operating 
on H^R(X/W\ If K is the field of fractions of W, consider the semilinear 
endomorphism of the X-vector space H%R(X/W) ® K induced by F. 
Then Fa is W-linear, and we may pass to a finite field extension L/K 
which contains the eigenvalues of F". If ord denotes the valuation on L 
such that ord(q) = 1, what can we say about the values ord(a) for the 
eigenvalues a of JF"? 

There is a beautiful conjecture of Katz which links the values ord(a) by 
a series of inequalities to the hodge numbers of X. This conjecture is most 
elegantly described by means of 'Newton polygons'; but by way of 
introduction, it will do little harm to begin by bluntly listing the ine­
qualities: 

Let the "Hodge numbers" hl = h1'™'1 denote the dimension of the 
vector space Hm~l{XK,Qx/K). Set ft = h° + hl + .. . + h\ Let a, denote 
the eigenvalues of Fa on H^R(X/W\ and arrange them so that at = ord af 

are nondecreasing. Then, 
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O ^ ax ^ a2 ^ . . . g ap ^ m, where jff = dim H%R(XK/K). 

FIRST FORM OF THE CONJECTURE. Let t be any positive integer less than 
or equal to /?. Write ft < t < ft+1 and set r = t - ft. Then 

ax + .. . + at ^ 0 • h° + 1 • hx + .. . + j • hj + (ƒ + 1) • r. 

To get a sense of what the above conjecture says, here are some conse­
quences: There are at most h° eigenvalues at which are p-adic units. If this 
maximum is attained, that is, if there are h° eigenvalues which are p-adic 
units, then all the remaining eigenvalues are divisible by q and there are 
at most h1 of those, such that ajq are p-adic units—and so on. An applica­
tion is the following important 

DIVISIBILITY COROLLARY. Let C be the smallest integer such that hc is 
nonzero. Then all eigenvalues at are divisible by qc. 

The above conjecture should be strengthened in various ways. First, 
giving a suitable interpretation to the word "eigenvalue" we may deal 
directly with the semilinear endomorphism F, and then we shall be able 
to pose the conjecture for any perfect field—not necessarily finite. Secondly, 
we may deal with nonliftable varieties X0/k as follows: 

Define the reduced Hodge numbers hi,m~{ of X0 by 

J?'1"-' = dimk(£^-') 

where the term on the right is the £^m_I term of the Hodge spectral 
sequence, 

Define the modp Hodge polygon of X0 to be the polygon constructed 
by means of the reduced Hodge numbers 

CONJECTURE FOR NONLIFTABLE VARIETIES. The eigenvalues of Fa operat­
ing on the crystalline cohomology group H™rh(X0 W) submit to the above 
system of inequalities, where one takes the reduced Hodge numbers in place 
of the h*. 

It is a theorem of Dwork that the above system of inequalities holds for 
hypersurfaces. 

(See [2] where this is proved for hypersurfaces of degree prime to p.) 
The "Divisibility Corollary" was established by Katz for smooth 

complete intersections in projective space [3]. 
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The reader may convince himself that the functional equation alone 
is all that is needed to establish the above system of inequalities for curves, 
or abelian varieties. 

2. Newton polygons. Let us begin with a well-known proposition in 
semilinear algebra. 

PROPOSITION (DIEUDONNÉ, MANIN). Let k be algebraically closed of 
characteristic p. Let K be the field of fractions of W(k). Let V be a finite-
dimensional vector space over K admitting a Frobenius-linear automor­
phism T, which preserves a W(k)-lattice in V. 

Thus, V may be regarded as a module over the noncommutative ring 
A = X[T], of polynomials in T with coefficients in K such that 

F(x)T= T-x 

forx e K, where F is Frobenius. 
Then V may be expressed uniquely as a direct sum of A-modules 

i = t 

V = © VtiA where rjst < ri+1/si+i 

and Vrs is the A-module A/A(TS — pr\ r ^ 0, s ^ 1, both integers. 

The quantities rf/5f are called the slopes of V, and one says that the slope 
rjsi occurs in V with multiplicity st. Thus, a knowledge of the slopes of V 
and their multiplicities is equivalent to a knowledge of V, up to isomor­
phism. 

If k is a finite field of q = f elements, and M a module of finite type 
over W(k) possessing an injective Frobenius-linear endomorphism T, 
then the quantities ord€(a) where a ranges through the eigenvalues of Ta 

are precisely the slopes (counting multiplicities) of the ^4-module 
V = M ®Wi}i)K, where K is the field of fractions of W(Jc). 

Consider the set of quantities, 

(*) ( ^ i , 5 1 ) , ( r 2 , 5 2 ) , . . . , ( r t , s f ) 

and define the Newton polygon of (*) to be the convex polygon (= graph 
of a convex piecewise linear function) in the plane, whose left-most point 
is the origin (0,0) and which has slope rJsi over the interval of the horizontal 
axis \_s1 + ... + si-l9s1 + . . . + s j . Its right-most point lies above the 
point sx + . . . 4- st on the horizontal axis. 

Thus the Newton polygon of V (which is, by definition, the Newton 
polygon of its slopes and multiplicities as described by (*)) completely 
determines V, up to isomorphism. 
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(Sx +S2 , Rr + R2) 

(0,0) 

FIGURE 1 

Return to a smooth proper scheme X/W, where W is the Witt vectors 
of any perfect field of characteristic p. By the m-dimensional Newton 
polygon of X/W, we shall mean the Newton polygon of Hm(X/W) ®w K, 
endowed with the 'canonical lifting of Frobenius,' where K is the field of 
fractions of W(k). 

By the m-dimensional Hodge polygon of X/W we shall mean the convex 
polygon in the plane whose left-most point is the origin and which has 
slope j over the interval of the horizontal axis 

[fcO,m + _ + y - l,m-J+ 19 h0,m + _ + fr/»-j]. 

( 0 , 0 ) 

Now, Katz's conjecture may be paraphrased: 

SECOND FORM OF THE CONJECTURE. The (m-dimensional) Newton polygon 
of X/W lies above (or on) the (m-dimensional) Hodge polygon of X/W. 

The Newton polygon is a very convenient geometric way of expressing 
the system of inequalities given in §1. For example, (a) the break-points of 
the Newton polygon must occur at integral lattice points; (b) Poincaré 

FIGURE 2 
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FIGURE 3 

duality and, if X/W is a projective variety, the strong Leftchetz theorem 
give us that the right-most part of the Newton and Hodge polygons 
coincide: it is the point (/?, j8m/2). 

EXAMPLES. l.X = a curve of genus 3. The five different Newton polygons 
(for one-dimensional cohomology) allowed by the restraint of Poincaré 
duality are drawn in the diagram below. Note that the conjecture of Katz 
introduces no new restraints for a curve. Do all five possible configura­
tions occur as actual Newton polygons of curves? 

FIGURE 4 

2.X — a smooth proper surface such that ft0,2 = 1. Then the possible 
configurations for two-dimensional Newton polygons are quite restricted 
by the conjecture of Katz. (See Figure 5.) 

A polygon fulfilling the conditions imposed upon it by 
(a) the conjecture of Katz, 
(b) Poincaré duality, 
(c) the fact that there must exist at least one algebraic cycle on the 

surface, 
can be described totally by stipulating an integer h such that 0 ^ 2h < b2. 

The polygon associated to the integer h is the one possessing slopes 
1 - 1/ft, 1,1 + 1/ft with multiplicities h, b2 - 2ft, ft respectively. (See 
Figure 5.) 
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FIGURE 5 

My personal interest in the p-adic analysis of the eigenvalues of Frobe-
nius began when I came across the invariant h described above, from a 
fundamentally different directioa In some cases this number h can be 
viewed as the height of a p-divisible formal group on one parameter that 
M. Artin and I can attach to the surface X. 

Using the theory of Berthelot, I have recently been able to establish 
the validity of the above conjecture, under a mild hypothesis: 

THEOREM 1. The above conjecture is correct under the assumptions that 
Hq(X, Q&iw) are torsion-free W-modules, and X/W is a projective smooth 
scheme. 

REMARK. The assumption that X/W is projective is certainly a capri­
cious one. It serves the purpose of enabling one to use a version of the 
crystalline cohomology which has the air of being more 'familiar.' 

The assumption of torsion-freeness is more serious. It is satisfied in 
many cases of interest (e.g., smooth complete intersections in projective 
space), but is undoubtedly irrelevant to the final result, provided that 
one is willing to work under the weight of the machinery of derived cate­
gories. This looks interesting and may shed light on the relationship 
between the nondegeneration of the modp Hodge spectral sequence, and 
the existence of torsion in crystalline cohomology. 

3. Ordinary varieties, specialization and further examples. Let us give 
ourselves some exceptionally well-behaved family {Xt}teT of smooth 
projective varieties parametrized by a smooth irreducible scheme T/k. 
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By this we might mean that there is a f which is smooth over W such 
that n : X -• f (is a projective morphism and) is a lifting of our family to 
W, and, moreover, that RqnJ£l$if is locally free over 'T and commutes with 
base change for all p, q. A quite general (unpublished) theorem of Grothen-
dieck says that the m-dimensional Newton polygon of Xt rises under 
specialization oft. 

Therefore, the "minimal position" of the Newton polygons of Xt (in 
the Euclidean plane) is achieved by the generic member Xn of the family. 

We shall borrow (with precious little justification) a term used in con­
nection with abelian varieties and say that X0/k is ordinary in dimension m 
if the m-dimensional Newton polygon and the m-dimensional Hodge 
polygon of (a lifting of) X0/k agree. 

As a result of the theorems cited so far, 

COROLLARY. If Xt is ordinary in dimension m for some tsT, then so is 
the general member Xn. 

What is known about the existence of ordinary varieties? 

THEOREM (LUBIN, MILLER [9]). The generic curve of genus g in charac* 
teristic p > Ois ordinary (in dimension one, that being the only dimension in 
which a curve can fail to be ordinary). 

Of course, in our formulation of the above theorem, we have appealed 
to the theorem of Deligne and Mumford assuring us of the existence of 
the generic curve of genus g. 

THEOREM (MUMFORD [10]). Any "sufficiently general" abelian variety in 
characteristic p is ordinary. (Again, dimension one is the only relevant 
dimension.) 

Very little seems to be known about general hypersurfaces. It seems 
reasonable to hope that the general hypersurface of degree d and dimen­
sion N of characteristic p is ordinary (the relevant dimension here is N). 

Katz has shown (unpublished) that if X is the general hypersurface of 
degree d in n homogeneous variables with n^k I mod d, then the Newton 
and Hodge polygons of X have the same slope at the point (0,0) in the 
Euclidean plane. 

4. F-crystals and their associated spans. By an F-crystal we shall mean 
a W-module M of finite type, endowed with a Frobenius-linear endomor-
phism F. We may 'linearize' this notion over Wbe defining a new module 
Mip) = M ®w W{p) where W{p) is the module W, given a W-module 
structure by means of the Frobenius automorphism: W -> W. Then our 
F-crystal is a W-linear map, F:M{P) -• M. 
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Given an F-crystal as above, there is an operation we can perform which 
destroys almost, but not quite, all of its structure. What remains will be 
of great interest to us, in our applications. 

DEFINITION. A span F:H -> M is a W-linear homomorphism of W 
modules of finite type. Given an F-crystal we may pass to its associated 
span by 'forgetting that M(p) bears any relation to M.' 

Suppose we are given a span F:H -* M. Suppose further, as will be 
the case in our applications, that H and M are free over W of the same 
rank, and F is an injection. What determines the above span up to iso­
morphism, in the category of all spans? 

The classical 'invariant factor theorem' answers this question for us. 
It assures us that we may choose a W-basis of M so that F is representable 
by a diagonal matrix, whose diagonal entries are precisely 

1,1,...,1, p,p, . . . ,p, p2,...,p2, ,pm,...,pm. 

Moreover, the quantities 

hj = the number of times pj occurs on the diagonal 

are invariants of the isomorphy class of the span, and conversely, these 
numbers completely determine the isomorphy class of the span. 

DEFINITION. Let us refer to W as the jth Hodge number of the span. 
The above definition anticipates the following theorem: 

THEOREM 2. Let X/W be projective, smooth, and satisfy the hypothesis 
that Hq(X,Q%iW) are torsion-free. Consider the span associated to the 
F-crystal F: H%R{X/W) -> H%R(X/W). The Hodge numbers of this span are 
equal to the corresponding Hodge numbers of X/W. Explicitly, hj = hj'm~j. 

REMARK. Given an F-crystal F:M (P)-»M where M is free of finite 
rank, and F is injective, we may define the Hodge polygon of this crystal 
to be the polygon, as defined in §2, constructed using the Hodge numbers 
of its associated span. 

One then has the very easy 

LEMMA. The Newton polygon of an F-crystal lies above (or on) its Hodge 
polygon. 

Consequently the Katz conjecture (Theorem 1) follows immediately 
from this lemma and Theorem 2. 

SKETCH OF PROOF OF THE LEMMA. It is straightforward linear algebra. 
Begin by showing 

(*) If the Hodge numbers H of an F-crystal M vanish for i < c, then 
the slopes of the Newton polygon of M are greater than or equal to c. 
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Then use assertion (*) for the F-crystals A' M (rth exterior power) for 
all t ^ 1 to get the desired system of inequalities. 

The statement of the theorem above may be formulated without benefit 
of a lifting of X0 to W: 

CONJECTURE FOR NONLIFTABLE VARIETIES. Suppose X0/k is proper and 
smooth. Suppose the Hodge spectral sequence of X0/k degenerates at El9 

and the crystalline cohomology groups H*ris(X0/W) are free over W. Then 
the abstract Hodge numbers of its "m-dimensional span" are equal to 
corresponding Hodge numbers ofXJk. 

Explicitly, 

ti = dimHm-\X0,n{0) 

for allj, where hj is thejth abstract Hodge number of the span 

F:H^ris(X0/W)^H^ris(X0/W). 

I shall now present a sharpened version of Theorem 2. It is somewhat 
more technical, but it clarifies, I believe, some of the interrelations of the 
various structures which cohabit de Rham cohomology. Here I will 
assume that the reader is familiar with the two spectral sequences converg­
ing to de Rham cohomology mod p: 

Hodge: EY = HS(X0,0') => WD\s{X0/k\ 

Conjugate: Ey = Hr(X'0, Q
s) => Hr

D
+

R
s{X0/k) 

(cf. [5]). Here XJk is the closed fiber of X/Wand X'0 is defined to be the 
pullback under Frobenius: 

XQ —• XQ 

i i 
k -» k 

F 

These spectral sequences both degenerate (at Ex and E2, respectively) 
under the hypothesis of Theorem 2. 

THEOREM 3. Let X/Wsatisfy the hypotheses of Theorem ILet F.H-+M 
denote its associated m-dimensional span Let V denote reduction of a 
W-module mod p. Let Hj c H for each j ^ 0 denote the image in E of the 
submodule of H, F~ V M ) . _ 

Let Mj cz M for eachj ^ 0 denote the image in M of the submodule of M, 

-.FiF-^M)). 
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Then under the identifications 

H s H%R(X0/k), M s HZR(X0/k)9 

the /titrations 

(a) {0} = 2fm + 1c=. . .C t f , .C f f J ._ 1c: . . .c : f f 0==tf , 

(b) {0} c M0<=...<=Mm = M 

are identified with 

(a) 

(b) 

t/ie Hodge filtration on HpR(X0/k), 

the conjugate filtration on H^R{XJk). 

Moreover, after these identifications, there is a commutative diagram: 

F-^M) > Hj/Hj+1 ^ Hm-\X'0,Cil) 

1 
*J identity 

- . F(F~ V"M)) - Mj/Mj. ! s Hm~\X'Q, Q'). 

77ie general question. Removing the hypothesis of freeness of the 
ffp(X, f2|/Wr), it seems sensible to work with the entire complex Rn^Clxjw 

in the derived category of W-modules where n : X -• Spec W is the struc­
ture map. This leads us to define the full de Rham span of X/W as a mor-
phism 

F*:H'-+M* 

in the derived category. It would be tempting to hope that the de Rham 
span of X/W can be reconstructed up to isomorphisms entirely by means 
of modp data—e.g., by means of the complex Rn0^QXo/k endowed with 
its Hodge filtration, where the subscript 0 denotes reduction mod p. 

5. Spans endowed with Hodge filiations. Since Theorem 2 assures us 
that the spans associated to the de Rham cohomology groups of X/W 
yield 'no new invariants of X/W beyond the Hodge numbers, it is of 
interest to retain a bit more information concerning X/W: 

DEFINITION. The m-dimensional filtered span of X/W is the associated 
span of the F-crystal, 

F:H£dX/W)->HSR(X/W) 
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together with the Hodge filtration 

O c H m c Hm.x c . . . cz H0 = H%R(X/W) 

on the domain. 
The category of filtered spans is the category whose objects are spans 

F:H -+ M together with filiations as above, 

O c H m c , , c i f 0 = H 

by sub-W-module direct summands. 
Now there is a condition, which I will refer to as the divisibility property, 

which implies (whenever it holds) that even the filtered spans of X/W 
yield no new invariants beyond the Hodge numbers. 

LEMMA. Let 

O c H m c , , c H 0 = H i M 

be a filtered span such that H and M are free of the same rank, F is an 
injection, and 

hj = mnk(Hj/Hj+1) 

where hj is thejth Hodge number of the span F:H -» M. 

These are equivalent: 
(1) F(Hj)c:pJMforallj. 
(2) There is a W-basis of H, compatible with the filtration 

O c i f m c , „ c i f 0 = i / 

{this means that Hj is generated by the last hj + hj+1 + . . . + If1 basis 
vector s) and a W-basis of M such that the matrix of F with respect to these 
bases is a diagonal matrix, with diagonal entries 

1,1, . . . , 1, P,P, >Pm>Pm-

(3) DEFINITION. The above filtered span is divisible. 
I have no examples of smooth proper schemes X/W whose filtered span 

is not divisible. 
The following weak divisibility property is quite easy to establish: 

FHj c pU]M 

where p[jl is the jth divided power of the ideal generated by p. Explicitly, 
we may take 

[ƒ] = min ordp(p7n!). 
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Consequently, the divisibility property holds for the filtered spans of 
schemes X/W of dimension less than p = char(fc). It holds, therefore, for 
curves, and for abelian varieties. 

In attempting to understand divisibility phenomena, I discovered some 
curious estimates [8]. For example, one may prove 

(*) FHj c £ p[j~k]FHj + pjM 
k<j 

and, in particular, 

FHj c pFH + pjM. 

At the moment one lacks sufficient insight even to venture a guess as 
to whether the "divisibility property" holds generally and the sequence 
of curious estimates I obtain are a mere artifact of my method, or whether 
these estimates do reflect the intricacy of the phenomena. 

It is interesting to consider the first unresolved case: p = j . 
For this, let us concentrate on a p-dimensional scheme X/W9 p = char(fc), 

and take m = p. 
The only obstruction to the divisibility property is given by the map 

Under the conditions of the theorem, one may re-express this obstruc­
tion as a bilinear map 

H°(X09 Q$0/k) <S> H°(X09 WXolk) ^ k. 

This bilinear form seems to be quite interesting. It depends upon the 
lifting X/W. It is alternating if p = 2, and symmetric if p # 2. 

Since it represents the (only) obstruction to the truth of the divisibility 
property for such X/W, the reader may have gathered that I have no 
examples where A ^ 0. 
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