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ABSTRACT. We prove for a general optimal control problem 
that , in the absence of abnormal admissible extremals (solutions 
of a generalized Weierstrass E-condition), any control which is 
optimal in the set of original (ordinary) controls must also be 
optimal in the larger set of relaxed (measure-valued) controls. 

1. We consider the model of an optimal control problem studied in 
[2]. This model was found applicable, among others, to unilateral 
control problems defined by ordinary differential and multidimen­
sional integral equations [3], evasion problems [4], and conflicting 
control problems [5]. For the sake of completeness, we begin by re­
stating the definition of this model. Let T and R be compact metric 
spaces and /x a positive and nonatomic Radon measure on T. We de­
note by rpm(R) the set of regular Borel probability measures on R 
endowed with the relative weak star topology of C(R)*, by (R the 
class of jLt-measurable functions on T to R (original control f unctions), 
and by S the set of ju-measurable functions on T to rpm(R) (relaxed 
control f unctions). We embed R in rpm(R) and (R in S by identifying 
each rÇzR with the Dirac measure at r. In turn, we view S as a subset 
of Ll(T, C(R))*, and endow it with the relative weak star topology, 
by identifying each (r£S with the functional <l>—*Jy<(dt)J<t>(t) (r)a(t) (dr). 

Now let R be the real line, 9C a real topological vector space, C a 
convex body in 9C, B a convex subset of a vector space (the set of con­
trol parameters)y m a positive integer, x = (x0, xi, X2)*SXB—>RXRm 

X 9C a given function, and 

a(OL) = {(a,b)e^XB\ %x(<r, b) = 0, xt(*9 b) G C] (<U C S). 

We say that (cr, 5) is a minimizing original (respectively relaxed) solu­
tion if it yields a minimum of Xo on Cfc((R) (respectively on <3,(S)). A 
minimizing original solution is a minimizing strictly original solution 
if it is not at the same time a minimizing relaxed solution. We set 
Q = §>XB, denote by 3m+i the simplex {(0°, • • • , dm)ERm+1\ej^0} 
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X)!T=o0y=l} a n d by Dx(q; q — q) the directional derivative 
lima^+o a-1[x(q+a(q--q)) —x(q)]. For Ç, q0, qh • • • , qmEQ> we say 
that the function 

6 -> x ( q + X) 0y(# - 5) ) : 3* ,+1 -> 2? X i?m X 9C 

is differentiable at 0 if it has a Fréchet derivative at 0 relative to 
3TO+i, i.e. if 

[ / m \ m 

* ( 5 + E ö% - 5) ) - *(ï) - E «y0*(3; ?; - 5) 

= 0 

in RXRmXX as |0|->O, 0G3m+i. 
Points Ç = (er, 6) GS X 5 and /= (/0, /i, /2) G [0, oo ) XRmX 9C* define an 

extremal (Ç, /), and 5 is extremal if $ and Z satisfy the generalized 
Weierstrass E-condition (maximum principle) 

1*0, l{Dx(q) q - q)) ^ 0 (g G Ö) an<* h(x2(q)) ^ 1(c) (c G C). 

An extremal (5» 0 is admissible if 5 = ((r, 6)G$(S); an extremal (q, /) 
= (?, /o, h, h) is abnormal if /o = 0. The optimal control problem is 
normal if there exist no abnormal admissible extremals. 

THEOREM I. Assume that, for each choice of Ç, q0l • • • , gmGQ, witó 
Ç = (<r, b) and qi — ^i, b%) (i = 0, 1, • • • , ra), the f unction 

(a, e)->x(a,b+jt, 6>Xb,- - 5) J :S X 3m+i->^ X #™ X 9C 

is continuous and the function 

d->x(q+ f > > ( # - ? ) ) : 3 w + 1 - > i ? X i ? m X 9C 

is differentiable at 0. /ƒ (p, b) is a minimizing strictly original solution 
then there exists an abnormal admissible extremal (o-#, 6#, 0, h, k) such 
that x0(o-#, ¥) <Xo(p, b). 

PROOF. Let (p, 5) be a minimizing strictly original solution. We set 

B' = BX R, X' = XX R, C" = C X ( - » , 0), 

XQ (Œ, b') = a, x{ (a-, 6') = #i(a-, £), 

*2' ((7, 6') = (x2(a, b), x0(<r, b) - Xo(p, b)) (a G S, b' = (b, a) G B'), 

#' = (̂ o , #i , xi). 
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We denote by P the optimal control problem we are considering and 
by P ' the problem obtained by replacing B, 9C, C and x with B', 9C', 
C' and x', respectively. Since (p, h) does not minimize Xo on 6(S), 
there exists (cr#, 6#)£Cfc(S) such that #o(<r#, 6#) <#o(p, 5). I t follows 
that xj(cr#, 6#, 0) = 0 and x£(o*, b*, 0 )GC' . The argument of [2, 4.1, 
Proof of Theorem 2.2, p. 369], when applied to P ' and (<r#, 6#, 0), 
shows that either (a) there exists I = (l0, h, U ) G [0, oo ) XRm X (9C X # ) * 
such that ((7#, &#, 0, /o, h, ® is an admissible extremal of P ' , or (b) 
there exists (pi, 61, o^ÇCRX-B' such that x{(pi, &i, cei) = Xi(pi, hi) = 0 
and ^(pi , 61, a i )EC"; hence x2(pi, ô i ) £ C and x0(pi, &i) <#o(p, 5). The 
alternative (b) must be discarded because it conflicts with the as­
sumption that (p, h) is a minimizing original solution. We set, in (a), 
U =(&, Ao)G9C*Xi? a n d £# = (Ö-#, * ' ) , and conclude that 

M 0 , loa+liDxi(q#; q-q*)+h(Dx2(q#', q-q^)+XoDx0(q*] q-q*)^0 

(a£R,q= (*,b)e$X B) 

and 

h(x2(q*)) + \a[xo(qt) - *o(p, 5)] ^ fe(c) + X0a (c G C, a G ( - «>, 0)). 

Since Xo(<?#) <#o(p, 5)» these relations imply that X0 = /o = 0 and show 
that ((J#, 6#, 0, /1, /2) is an abnormal admissible extremal of P . Q.E.D. 

2. Theorem I can be applied, under certain conditions, to prob­
lems where the original control functions are not a priori restricted 
to a compact set (e.g. to a problem of Bolza when its admissible ex­
tremals have uniformly bounded derivatives). Examples can be 
given [6, p. 118] of simple problems that possess minimizing strictly 
original solutions but, in view of Theorem I, these problems cannot 
be normal. If we add (to those of Theorem I) the assumptions that 
<$(S) is nonempty and there exists a sequentially compact topology 
of B such that x is continuous on S X ^ (or an appropriate subset) 
then, by [2, Theorems 2.1 and 2.2, pp. 362-363], there exists a 
minimizing relaxed solution and it is extremal. Thus, in normal prob­
lems, a minimizing original solution exists if and only if there exists 
an extremal point (p, 5)£<$((R) that minimizes Xo among all extremal 
(<?, î )Go(S) . This suggests that the most promising approach to a 
theory of minimizing original solutions will remain the one that led 
to the justification of the Dirichlet principle and that McShane [ l ] 
applied in 1940 to the Bolza problem (using Young's [7], [8] gen­
eralized curves as tools) ; namely, the investigation of conditions 
insuring that weak solutions of the problem (such as minimizing gen-
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eralized curves or minimizing relaxed solutions) are also "classical" 
solutions. 

We expect to publish elsewhere extensions of Theorem I with some­
what weaker hypotheses and with original control functions restricted 
by the condition p(t)^R^(t) jit-a.e., where Rf(-) is a given ju-measur-
able set-valued mapping. We shall also demonstrate the applicability 
of the model to functional-integral equations in C(T, Rn) and 
2>( r , Rn). 
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