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1. Introduction. The main purpose of this note is to announce a 
result (Theorem 5) concerning finite-dimensional representations of 
semisimple Lie groups of real rank 1. Theorem 5 extends [5, Corollary 
3.8], which states that the finite-dimensional spherical representations 
are the conical ones, and [7, Corollary 1 of Theorem 2.1], which 
asserts the existence of minimal types for finite-dimensional repre­
sentations of complex groups. Our method, based on a previously 
unpublished general formula (see §2) due to B. Kostant, yields 
several other multiplicity results as well. 

Let Hi be a real Lie group and let H2 be a Lie subgroup of H\. Let 
aÇzÔi (- denotes the set of equivalence classes of finite-dimensional 
continuous complex irreducible representations), and assume that 
the restriction to H2 of any member of a splits into a direct sum of 
irreducible representations of H2. For all j3£ H2, let m(af j8) denote the 
corresponding multiplicity. 

We are concerned here with the case in which Hi is a connected real 
semisimple Lie group G of real rank 1, and H2 is the connected Lie 
subgroup K corresponding to Î, where 8 = f+£> is a Cartan decompo­
sition of the Lie algebra of G. The solution of the problem of comput­
ing the multiplicities for the pair (G, K) is contained in the solution 
of the problem for the "dualized" pair (JJu U2). Here Ui is the simply 
connected compact Lie group with Lie algebra ï + i p C ö c (the com-
plexification of g), and U2 is the connected compact Lie subgroup of 
Vi corresponding to Ï. 

I t is well known (see [4, Chapter IX] for the notation and classi­
fication) that if the Lie algebra of Ui is assumed simple, there are 
five possibilities for the pair ( Ui, U2) : 

Type An: (SU(w + 1), S(Z7i X Un)) (special unitary case) 
Type Bn: (Spin(2^ + 1), Spin(2w)) (orthogonal case) 
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Type Cw: (Sp(n), Sp(l) X Sp(^ — 1)) (symplectic case) 
Type Dn: (Spin(2^), Spin(2w — 1)) (orthogonal case) 
Type F4: (F4, Spin(9)) (exceptional case) 

The multiplicity formulas for the special unitary and orthogonal 
cases are well known and classical (see [ l]) . Starting from Kostant's 
formula (§2), and using combinatorial reasoning, we can easily re­
cover these formulas, as well as obtain (by much harder arguments) 
a formula for the symplectic case (§3) and partial formulas for the 
exceptional case (§4). Our results stated in §3 and §4 seem to be new, 
although G. C. Hegerfeldt [3] has obtained a formula for certain 
other pairs of symplectic groups. Our symplectic result is expressed 
rather interestingly in terms of the combinatorial function Fm de­
fined below. I t would be desirable to have a complete multiplicity 
formula for the exceptional case. In §5 we state Theorem 5 and 
another application of our results. 

2. Kostant's formula. Let U be a compact connected Lie group 
and F a compact connected Lie subgroup of U. Let 5 and T be 
maximal tori of U and F, resp., such that TQS. We denote by u 
the Lie algebra of U, and by t), 8 and t the Lie silbalgebras of u 
corresponding to F, S and 7\ resp., so that tC$ . Let v—->*>* denote the 
restriction map from 8' to t', where $' = Hom#(8, C) and 
t' = Horne t , C). 

ASSUMPTION. We assume that b contains a regular element of u. 
We may choose an element X& which is regular in both u and t>. 

We fix the unique Weyl chambers in 8 and t (for u and t>, resp.) which 
contain X. Positivity and dominance of roots and weights are taken 
with respect to these chambers. 

Let coi, • • • , o)r&' be the positive weights of the canonical repre­
sentation of t> on (tt/t))c, repeated according to multiplicity if neces­
sary. For every jit£t', let P((JL) be the number of nonnegative integral 
r-tuples wi, • • • , nr such that ju= ]C£=i w»co». 

Let p £ 8 ' be half the sum of the positive roots of u, and let W be 
the Weyl group of tt, regarded as a group of linear transformations of 
$'• Let DuQ$' and ZVCt ' denote the sets of dominant integral linear 
forms for U and F, respectively. We identify Û with Du and V with 
Dy by assigning to each equivalence class of representations the 
highest weight of any of its members. 

THEOREM 1 (KOSTANT). For all\ÇzDu and fiGDv, we have 

f»fr, /*) = S (det cr)P((er(X + #))* - 0* + p*)). 
o-GTT 
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Kostant has shown that a modified version of Theorem 1 remains 
true when the above assumption is dropped. Theorem 1 is easily 
proved from Weyl's character formula by generalizing the proof of 
the special case of Theorem 1 given in [2]. 

3. The symplectic case. Let n = 2, 3, • • • , and let U = Sp(n)' 
F = Sp(l)XSp(?z — 1), so that 8 = t in the above notation. Now $' has 
a real form with a basis {0i, • • • , <j>n\ such that the roots of Uc with 
respect to its Cartan subalgebra $c are ±0*±0y (l^i<jèn) and 
±20* (1 ^i^n), and the roots of be with respect to $c are ±0*±0y 
(2^i<jSn) and ±20* (l^i^n). We may take 

Du = < X) ö<0» I 0< £ Z, fli è • • • è 0n è 0> , 

Ar = | Ê M< | &< G Z, fti ^ 0, ft, è fts è • • • ^ ft» è o} . 

DEFINITION. Let /, w G Z , m ^ l , and let gi, g2, * • • , îm£^+. We 
define .Fw(/; gi, #2, • • • , q_m) to be the number of ways of putting / 
indistinguishable balls into m distinguishable boxes with capacities 

THEOREM 2. Let X= X X i a^i^Du and fi= X X i ft*0*€ïjCV. Define 

A i = ai — max(a2, 62), 

-4*- = min(a9-, ft*) — max(a»-+i, ft*+i) (2 ^ i ^ w -- 1), 

4̂W = min(aw, ftn). 

jTAew m(X, fx)=0 unless h+ XX1 AiG2Z {that is, X X 1 (<*»•+&*)G2Z) 
and -4i, -421 * * * , ^4n-iè0 (^4n^0 automatically). Under these condi­
tions, 

L c { l , 2 , . • -,n} 

- 2 - |Z| +^-(-h + i^A^)-'£Ai\ 
2 V *=i / *GL 

CD 
= Fn_if —f ftx- y l i + X 4 t-J; ^2? A3, • • • , i4wj 

- Fn_if—f - f t ! - 4 i + X) 4<j - 1; A2,AZy • • • ,AnY 
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where \L\ denotes the number of elements in L, and (J) denotes the 
binomial coefficient, which is defined to be 0 if x<y. 

4. The exceptional case. Let U = Fi, V=Spin (9), so that again 
S = t. There is a real form of 3' with a basis {^i, \f/2i ̂ 3, \̂ 4} such that 
the roots of Uc with respect to $c are ±\f/i±\{/j ( l ^ ' < j ^ 4 ) , ±\f/i 
(1 ̂ i ^ 4 ) and j]ÜCt=i ±^»-, and the roots of be with respect to $c are 
±^i±^j ( 1 ^ * < J ^ 4 ) and the elements è X X i ±^* with an odd 
number of minus signs. We may take 

°u = { È *«M either a< G Z ( l g f ^ 4) or a< G Z + § (1 g i ^ 4), 

0 ^ 0 2 ^ 0 3 ^ 0 4 ^ 0, ai ^ #2 + #3 + #4> , 

*V = \ i b ^ i \ either J< G Z ( l ^ i g 4) or i< G Z+ f (1 ^ i ^ 4), 

i i è J s è i . è I *41 , ftx ̂  *2 + ft. + 64 > . 

THEOREM 3. L ^ a £ Z + , .90 that\ = aip1CiDu. Let IJL == ] C t a btfiGDv. 
Then m(X, ju) = 1<=>62==&3= — &4 awd 61+62^#; otherwise, m(X, w) = 0 . 

THEOREM 4. Le£ X = XXia*^**€=-^ff' rftew ju = a 2^i+az^+a^^s 
—04^4G-^7, # t ó m(X, jit) = 1. 

5. Applications. Let G = KAN be an Iwasawa decomposition of a 
connected real semisimple Lie group of real rank 1, and let Af be the 
centralizer of A in i£. For all a (EG, let 7 ( « ) £ I be the class under 
which the highest restricted weight space of any member of a trans­
forms. Using Theorems 2 and 4 and the known multiplicity formulas 
for the other rank 1 simple groups, we can prove: 

THEOREM 5. For all y (EM there exists fi(y)ÇEK satisfying m(J3(y), y) 
= 1, such that m(a, P(y(a))) = 1 for all aÇEG. 

The correspondences 7—»/3(y) and a—^18(7(0:)) can be interpreted 
geometrically in terms of walls of Weyl chambers. Using this in­
terpretation, we can construct analogues for rank 1 groups of the 
homomorphisms given in [7, Theorems 2.2 and 2.3]. 

An element a£G is said to be of class 1 if it contains the trivial 
element of K. Theorems 2 and 3, together with known facts about 
the other rank 1 simple groups, yield: 

THEOREM 6. IfaEGis of class 1, thenm,(a,(3) ^lfor allfiGK. 
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Theorem 6 is essentially the same as a result [6, Theorem 6] re­
cently obtained by Kostant by different methods. Our treatment, 
however, gives new information—an explicit list of the highest 
weights of the elements of K contained in a given class 1 element of G. 

Formula (1) reduces Theorem 5 in the symplectic case to the fact 
that the number of ways of putting 0 balls into boxes is 1, and The­
orem 6 to the fact that the number of ways of putting balls in 1 box 
of finite capacity is :g l . 
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