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The aim of this paper is to announce the results of the author's 
lecture given in Tulane University for the Fall of 1970 under the 
same title. Since the Pontryagin duality theorem was shown, a series 
of duality theorems for nonabelian groups has been discovered, 
Tannaka duality theorem [14], Stinespring duality theorem [lO], 
Eymard-Saito duality theorem [5], [8] and Tatsuuma duality 
theorem [15]. Motivated by the Stinespring duality theorem, Kac 
[7] introduced the notion of "ring-groups" in order to clarify the 
duality principle for unimodular locally compact groups. Sharpening 
and generalizing Kac's postulate for the "ring-group," the author 
[11 ] gave a characterization of the group algebra of a general locally 
compact group as an involutive abelian Hopf-von Neumann algebra 
with left invariant measure. 

Let G be a locally compact group with left Haar measure ds. 
Let § denote the Hubert space L2(G, ds). Define a unitary oper­
ator Won $ ® £ by (Wf)(s, t) =f(s, st),/G£>®€>> s, tEG. Let a(G) 
be the von Neumann algebra on § consisting of all multiplication 
operators p(f) by fEL™{G). The algebras Ct(G) and L°°(G) will be 
identified. Let 311(G) denote the von Neumann algebra on § gen­
erated by left regular representation X of G. The fundamental facts 
of all duality arguments for groups are the following: the map 
ÔG'*X*-*W(X®1)W* is an isomorphism of a(G) into 0(G)® Cfc(G) such 
that (6(?®i) o 5 ö = ( i ® S ö ) oöo; the map yG'*x*-*W*(x®\)W is an 
isomorphism of 9TC(G) into 2flX(G)®9fTC(G) such that (jo®i) oyo 
= ( Ï ® 7 G ) 0 7 0 and a" oyG=yo where a denotes the automorphism 
of <&0p)®(B(ê) defined by a(x®y) = y®x. According to these facts, 
the preduals Cfc*(G) and M,^(G) of <$(G) and 9fTC(G) turn out to be 
Banach algebras by the following multiplications: (x, yp*<p) 
= <5(*), t®<p), x G a ( G ) , i£, ^Ga*(G) and (x, *> *^> = <7(*), <P®t), 
#£2fîl(G), <p, ^£2fll*(G). The Banach algebra d*(G) is nothing but 
the usual group algebra Ll(G) and the duality theorems mention 
that the Banach algebra 2HX*(G) is semisimple and the spectrum space 
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of 9fTC*(G) is the given group Gitself by the map:^G9TC*(G)>-*(X00*, <p), 
sEG. 

Noticing this scheme of duality principle for groups, we develop 
the duality theory for more general subjects, Hopf-von Neumann 
algebras, based on the theory of von Neumann algebras. A Hopf-von 
Neumann algebra is a pair {Œ, S} of a von Neumann algebra G and 
a normal isomorphism S of Ct into &® 6 such that (ö®i) o ô== (i®ô) 
o S, where i denotes the identity automorphism of d. The isomorph­
ism ô is called a comultiplication of CL. If Ö, is abelian, then {Cfc, b) is 
said to be abelian. If {Œ, S} is a Hopf-von Neumann algebra, then 
the predual (£* of d turns out to be a Banach algebra with the prod­
uct, called the convolution, given by (x, <p * ip) = (ô(x), <p®rp), 
xEd, <p, ^ECfc*. In the tensor product Ö 0 Ö , let a denote the auto­
morphism defined by <r(x®y) = y®x, x, yE®. If a o 5 = S, then S is 
said to be symmetric. The resulted Banach algebra (2* is abelian if 
and only if ô is symmetric. The involution of {Œ, S} is an anti-auto­
morphism v of ($, such th.3itv2 = i and (^®^) OÔ = ( T O 5 O J \ The triplet 
{G,, S, *>} is called an involutive Hopf-von Neumann algebra. In this 
case, the Banach algebra Cfc* admits the involution: <£>£($*»—><£>#£($* 
defined by (x, <P#) = (K**)> <p)~~, xE®, <pE$*. In the following, we 
write v(a)=<rf v(a*)=ab for a £ û and tp(<p)=<p^ for <pG&*. If a 
faithful, semifinite, normal trace r of d satisfies the equation: 

(r ® r)((a ® i)S(c)) = (r ® r)((<T ® c)8(J)) 

for every a, & and c in L ^ r ^ C t , then r is called a fe/£ invariant mea­
sure on {et, 5, v}. A right invariant measure is also defined in the 
similar way. \i v leaves r invariant, then r is said to be unimodular. 

For a locally compact group G, a(G) and 2fTC(G) both admit the 
comultiplications So and 7G respectively. The involutions vo ol 
{a(G), ô(?} and KQ of {911(G), 70} are defined respectively by 
vo(J)(s)^f(s-^)jea(G))sGG1a.ndKG(x)^Cx^C1xE^(G)i where C 
denotes the conjugation CiZEfQ^iEfQ* The trace IXQ on a(G) de­
fined by /*(ƒ) =fof(s) ds is indeed a left invariant measure of 
{(3t(G), 80, Ï>G}. H G is unimodular, then the canonical measure <po 
defined on 911(G) is a unimodular measure of J2fTC(G), yo, KQ}. 

Suppose now an involutive Hopf-von Neumann algebra { a, ô, v, r} 
with left invariant measure is given. 

LEMMA 1. There exists an ideal a of a contained in the definition 
ideal mr of the trace r such that 

(i) a is invariant under both v and the transpose lvofv\ 
(ii) a is dense in the Hubert space L2(($, r) ; 
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(iii) the map: a£a*-*V o v(a) £ a is essentially selfadjoint in L2(Cfc, r) 
and the closure A of this linear map is positive and nonsingular; 

(iv) a is closed under the convolution product. 

Regarding Ofc as a function system, we denote its elements by 
ƒ, g, • . . . A linear map: ]D^ /*®«<e*®A M L<^£fe<) ( f<®l ) 
£ a ® ( $ is extended to a unitary operator W on L2(a(g)a, T®T). 
Representing Gfc on L2(r), we have ô(a) = W(l®a)l/F*, a £ a . The 
convolution product and the involution: ƒ»—>ƒ* makes a into a left 
(generalized) Hilbert algebra in the sense of [12]. LetX(/) , /(Ect, de­
note the convolution operator: g*-*f * g. Then this map X:/£a*-»X(jO 
is extended uniquely to a ^-representation of <$* = L1(r), which is also 
denoted by X. Let 9TC(X) denote the von Neumann algebra generated 
by X(/), fÇzLl(r). Then 9flX(X) is nothing but the left von Neumann 
algebra of the left Hilbert algebra. Using the selfadjoint unitary 
operator V:f>—>A~1/2/", we can define another representation X':/ 
g^i( r )h->7X(/)F, which is called the right regular representation of 
Lx(r). The original one X is called the left regular representation. Let 
9TC(X') denote the von Neumann algebra generated by X'(ƒ),ƒ£ L ^ r ) . 
Then we have 

THEOREM 1. 9frc(X)' = 9frc(X'). 

THEOREM 2. W£a®2flI(X). 

THEOREM 3. The map y\x*-*a(W*(x®\)W) is a comultiplication 
ofWLQi). 

Let C denote the c o n j u g a t i o n : / £ L 2 ( T ) ^ / * £ L 2 ( T ) . Then the map 
K:X*~>CX*C is an involution of the Hopf-von Neumann algebra 
{9frc(X),7}. 

The canonical weight <p of 9TC(X) given by the left Hilbert algebra a, 
see [ l ] , [2] and [13], behaves as if it were a unimodular measure on 
{SfTC(X), 7, K} . Based on {9ffl(X), 7, K, <p}, we can construct a Hilbert 
space L2(<p), the left regular representation p0 of the involutive 
Banach algebra 3TC*(X) with convolution product, a comultiplication 
So of the von Neumann algebra 9tfl(po) generated by po(<p), <£>£3TC*(X), 
an involution p0 of the Hopf-von Neumann algebra {2flT(p0), S0} and 
the canonical trace To on $ïl(po). Then we get 

THEOREM 4 (DUALITY). There exists a unitary operator A of L2(r) 
onto L2(<p) which sets up an isomorphism of {($, S, p, r} onto 
{9fTC(p0), So, Po, To} . 

THEOREM 5. The following statements (Ci) and (Cii) (resp. (Di) awd 
(Dii)) are equivalent: 
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(Ci) The trace r is finite ; 
(Cii) the convolution algebra 3TC*(X) admits an identity. 
(Di) The canonical weight <p of 3TC(X) is finite; 
(Dii) the convolution algebra L1(T) = $* admits an identity. 

Either (Ci) or (Cii) implies the unimodularity of r. 
If either (Ci) or (Cii) holds, then {Ct, S, v, r} is called compact. On 

the contrary, if either (Di) or (Dii) holds, then {<$, 5, v, r} is said to 
be discrete. 

THEOREM 6 ( P E T E R - W E Y L ) . (i) If {a, d, v, r) is compact, then the 
left regular representation X of Ll(j) is decomposed into the direct sum 
of finite-dimensional irreducible representations with finite multi­
plicity] hence the von Neumann algebra 371(A) is atomic and finite, so 
of type I. Furthermore, every irreducible representation of Ll{r) is 
finite-dimensional and unitary equivalent to a component of\. 

(ii) If {<$, S, v, T } is discrete, then the dual statement of (i) for 9fft*(X) 
holds. 

THEOREM 7. (i) If [d, 5, v, r } is abelian, then there exists uniquely 
a locally compact group G such that { Q-(G), 5G, VG, TG} is isomorphic to 
{a,ô,v,r}. 

(ii) If {d, ô, v, r} is symmetric, then there exists uniquely a uni-
modular locally compact group G such that {9H((J) , YG, KG, <PQ} is iso­
morphic to { d, ö, v, T } . 

Applying our theory, we can get the Pontryagin, Tannaka, 
Stinespring, Eymard-Saito, Tatsuuma duality theorems for locally 
compact groups. 

The whole theory announced above will be published as Tulane 
University Lecture Notes. 
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