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1. Introduction. Let 3 be a complete simply connected riemannian
manifold of dimension 7 and sectional curvature K =0. Working
with closed geodesically convex subsets @& M C M, we use the fact
(see [4] or [6]) that I is a topological submanifold of M of some
dimension k, 0 <k <#, with totally geodesic interior °M/ and possibly
empty boundary d M. Note that M is star-shaped from every point,
thus contractible, and in particular simply connected.

Consider a properly discontinuous group I' of homeomorphisms
of M that acts by isometries on °M. If the elements of I satisfy the
semisimplicity condition described below (automatic if T\ M is com-
pact), and if 2 is a solvable subgroup of I', then Theorem 1 exhibits
a flat totally geodesic Z-stable subspace EC M, complete in M, such
that 2 has finite kernel on E and Z\E is compact. Thus Z is an ex-
tension of a finite group by a crystallographic group of rank dim E.
In particular,

(i) 2 isfinitely generated,

(i1) if 2\ M is compact, then M is a complete flat totally geodesic
subspace of M, and

(iii) if '\ M is a manifold, then the image of E in '\ M is a compact
totally geodesic euclidean space form.

Theorem 1 extends and unifies several results concerning the case
where M = M and I'\M is a compact manifold. Those results are the
classical theorem of Preissmann [7] which says that if K <0 then
every nontrivial abelian subgroup of T is infinite cyclic, Byers’ exten-
sion [2] of Preissmann’s theorem to solvable subgroups of T, the
case [10] where the elements of £ are bounded isometries of M, the
case [11] where 2 is central in T', and the case [11] where T is nil-
potent. Theorem 1 was known [9] in the case where M is riemannian
symmetric and I'\ M/ is compact. The case where M= M and T'\M is
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a compact manifold recently was independently obtained by S. T.
Yau [12].

Theorem 2 concerns the case where I'\M is compact, 0 M =,
and T is a direct product I'y XT',. If T'; is centerless, it provides a I'-
invariant isometric splitting M = M1 X M’ where I'; acts trivially on
M, and T'\\ M, is compact; if T is centerless it provides an isometric
splitting T\M = (I'\\ M) X T2\ M3z). The case where T'\M is a real
analytic manifold recently was independently studied by B. Lawson
and S. T. Yau [5].

The main results of this paper were presented at a seminar in
honor of the hundredth birthday of E. Cartan, at the University of
Paris in June 1970. Parts of this paper were the subject of lectures
by the authors at Rutgers University, Columbia University, M.I.T.,
and S.U.N.Y. at Stony Brook, between October 1969 and April 1970.

2. The flat subspace. Let p denote metric distance on M. Given
v¥ET we have the displacement function §,(p) =p(p, vp) =0 on M.
It is known [1] that §, is concave, i.e. that §, o ¢ is a real concave
function for every geodesic ¢ of M. Therefore, given any real number
a, the set Cy= {pEMI 8,(p) <a} is convex. If ¥’ ET commutes with
v then 4'(Cy) = Cy; in particular Cj is y-invariant. If §, assumes its
infimum a,=0 on M, then we say that v is semisimple and denote
C,=C% the minimal set of . This term is based on the symmetric
space case |9, Lemma 3.6]; see [6]. Through every point p&C, there
is a y-invariant geodesic line contained in C,, which may be reduced
to a fixed point of 4. From now on we assume that every element of
T is a semisimple isometry of M. It is classical [3] that this condition
is satisfied if I'\ M is compact.

LemMa 1. If F#=CCM is closed, convex and tnvariant under yET
then CNC,# .

Proor. First suppose that v has no fixed point. We adapt an argu-
ment from [10, p. 16]. Let LCC, be an invariant line of . There
exist pEL and ¢&C such that p(p, ¢) =p(L, C) because v induces a
nontrivial translation on L. Consider the quadrangle Q with vertices
b, ¢, ¢’ =vq and p’ =+vp. The geodesic segments from p to ¢, and from
p’ to ¢’, realize the distance from L to C. Since C is convex, Q has all
interior angles=n/2. Using K <0 it follows that Q is a flat totally
geodesic rectangle, so 8.,(q) =p(g, ¢") =p(p, p") =8,(p). Thusg&CNC,.

Next suppose that v has a fixed point p. We imitate the preceding
argument with p=p'. If ¢£¢’ then Q is the triangle with vertices p,
g and ¢'. Q is flat and totally geodesic in M and the sum of its interior
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angles is >w. Thus ¢=¢’, so §,(¢) =0=46,(p), and ¢g&CNC, as
before. Q.E.D.

LeMMA 2. Let yET' have infinite order (i.e. no fixed poinis). Then
the minimal set C., splits isometrically in M as D X E, where DC M 1s
convex and d X E is the y-invariant line through dED.

ProOF. The arguments of [10] remain valid for the manifold C,,
because C, is convex and §,>01is constanton C,. Q.E.D.

THEOREM 1. Let 2 be a solvable subgroup of I'. Then M has o flat
totally geodesic Z-stable subspace E such that

(i) E is complete in M,

(i) Z acts with finite kernel ® on E, and

(iii) Z\E is compact.

In particular, 2 is finitely generated and is an extension of the finite
group ® by a crystallographic group of rank=dim E.

Proor. First suppose Z abelian. If SCZ denote Cs=M,es Cs. Let
T be the torsion subgroup of 2. If T { 1} let 1#7ET; then dim C,
<dim M and T acts as a torsion abelian group on C,. By induction
on dimension now 7T has a fixed point on C,. Thus T is finite and
Cr# . f ¢:&2Z—T then C,, meets Cr by Lemma 1, so C,,\Cr
=D; X E' as in Lemma 2. This starts the recursion with Sy=7U {a}.
Now suppose {01, cee, ak}CSk C2 such that Cgs,=D;XEF*, where
E* is a flat totally geodesic k-dimensional subspace complete in M,
such that each d X E* is stable under every ¢ &Sy and is spanned by
the ¢i-invariant lines through d. 2 preserves the splitting and
{a’l, cee, o‘k}\Ek is compact, so 2 induces a properly discontinuous
group & of isometries of D;. Let T denote the torsion subgroup of £;
it consists of all elements with fixed points on Dy, so Zj = {GEE | g pre-
serves some dXEk} is its inverse image in 2. Let D{ denote the mini-
mal set of T on D;. Then Cz, =Dy X E* as above, and no €2, pre-
serves any d'XE*. If 2+#2; choose 0, 11EZ—2; and define S
=2kU{¢rk+1}. Cor,y meets Cy, by Lemma 1, and their intersection
Csiu=D XL as in Lemma 2. As 044 cannot preserve any d’ X E* of
Cz, now Cgpy=Dra X EF! with the properties corresponding to
those of Dy X E*. As dim M < « this recursion terminates. Theorem
1 is proved for the case where 2 is abelian.

Let A be the last nontrivial term in the derived series of Z. We
have just seen that C4=MN,c4 C. is of the form DX E, where E4is a
flat totally geodesic subspace complete in M such that 4 has finite
kernel on E4 and A\ E, is compact. Note that C4 is Z-stable and that
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the elements of 2 preserve its splitting as D X E4. Let £ denote the
group of transformations of D induced by 2. As 4A\E, is compact,
proper discontinuity of Z on M, thus on Cj, forces proper discon-
tinuity of £ on D. As A4 acts trivially on D, £=2%/B where A CB, so
the derived series of £ is shorter than that of Z. By induction on the
length of the derived series now D has a flat totally geodesic subspace
F with properties (i), (ii) and (iii) of Theorem 1 relative to £. Now
E=FXE4 has the required properties relative to 2. Q.E.D.

The proof of Theorem 1 did not really use discontinuity. We drop
that condition on 2 by modifying Theorem 1 as follows.

THEOREM 1’. Let 2 be a solvable group of semisimple isometries of M.
Let cly(Z) denote the closure of Z in the Lie group of all isometries of M.
Then M has a flat totally geodesic cly(Z)-stable subspace E such that

(i) E is complete in M,

(ii) clu(Z) acts with compact kernel on E, and

(iii) cly(@)\E s compact.

In particular every element of clyu(2) is a semisimple isometry of M.

{Modify the argument of Theorem 1 as follows. Omit all mention
of discontinuity. For Z abelian let °T be the torsion subgroup and
T=cly(*T)NZ; then cly(°T)=cly(T) and is compact, and Cor
= Ceipeery # & . In the recursion step for 2 abelian let °T% be the torsion
subgroup of £ and Ty=clp,(°Tx)MNE. Then the argument proves
Theorem 1'.}

3. Some consequences of Theorem 1. The following is the case in
which T is the fundamental group of I'\M. It includes the case in
which T\ M/ is a manifold.

COROLLARY 1. Suppose that I" acts freely on M and that Z is a solvable
subgroup of I'. In the notation of Theorem 1, 2 is a Bieberbach group
acting freely on E, and Z\E is a compact euclidean space form.

PrOOF. = acts freely on M, hence is torsion free, so ®= {1}. Thus
2 is a torsion free crystallographic group on E, i.e. is a Bieberbach
group. Q.E.D.

We specialize Corollary 1 to the motivating case of Theorem 1.

COROLLARY 2. Let M be a compact riemannian manifold of sectional
curvature K 0. Let 2 be a solvable subgroup of the fundamental group
m1(M). Then = is a Bieberbach group of some rank k, 0<Sk<dim M,
and M contains a closed totally geodesic k-dimensional euclidean space
form. In particular, mi(M) has a solvable subgroup of finite index if and
only if M is flat (i.e. is a compact euclidean space form).
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The following corollary is known [11, Theorem 2.1] in the case =
is central in I', and is related to Theorem 2.

COROLLARY 3. Assume I'\M compact and let Z be a solvable normal
subgroup of T'. Then M =DXE isometrically in M, where E is the
euclidean space corresponding to Z in Theorem 1, and where I preserves
this product decomposition of M.

Proor. In the notation of Theorem 1, £=2/® is a crystallographic
group on E. Let A=A4/® be its translation subgroup. ® is a charac-
teristic subgroup of =, and 4 is a characteristic subgroup of £, so 4
is a normal subgroup of I'. Conjugation by any vy &I induces a norm-
preserving automorphism of the lattice 4. If a €4 now the I'-con-
jugacy class of « is finite, so 8, is bounded. Thus [10] 8, is constant,
and if a1 then M =D;XE'! where d XE! is the a-invariant line
through d&D. The recursion technique of Theorem 1 now gives
M =D X E where E corresponds to 4, thus also to 2, in the statement
of Theorem 1. As 4 is normal in I' this decomposition is invariant
under every elementof I'.  Q.E.D.

COROLLARY 4. Let M be a compact riemannian manifold of sectional
curvature K 0. Let 2 be a solvable normal subgroup of wi(M). Then M
has parallel orthogonal foliations D and & such that dim D4-dim &
=dim M and the leaves of & are flat closed totally geodesic submanifolds
of dimension equal to the rank of Z as a Bieberbach group. In particular,
if w(M) is solvable then M is flat.

ProOF. Let M be the universal riemannian covering manifold of M,
so M =D XE as in Corollary 3. Let D (resp. &) be the foliation of 7
whose leaves are the images of the D Xe (resp. of the d XE). Q.E.D.

Our last corollary answers a question raised by S. T. Yau in the case
where I is free abelian and M is assumed complete.

COROLLARY 5. Assume that M has empty boundary, but do not as-
sume that the elements of T' are semisimple isometries of M. Suppose
that T' has a subgroup 2 of finite index that is isomorphic to a discrete
uniform subgroup of a simply connected solvable Lie group S with
dim S=dim M. Then M is flat and complete in M and T\M is compact
(so T is a crystallographic group on M), and S is a vector group.

Proor. Both M and S are acyclic, and 2 is torsion free because S is
torsion free, so M—2Z\M and S—Z\S are universal Z-bundles. Thus
Z\M and Z\S are homotopy equivalent. Let # be the smallest integer
such that H4(Z\S; Z;) =0 for ¢ >n; then z=dim Z\.S because Z\S is
compact, so H*(Z\M; Z;) #0. If the n-manifold Z\M were noncom-
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pact then [8, Theorem 6.4] we would have H»(Z\M; Z,;) =0. Now
Z\M is compact, hence flat by Corollary 2, and the assertions on M
and I'\ M follow. Thus we may assume 2 free abelian and the assertion
on Sfollows. Q.E.D.

4. The splitting theorem. The following result implies a rigidity
theorem for metrics of nonnegative curvature on compact product
manifolds. If M is a riemannian symmetric space of noncompact type,
it can be obtained by considering the algebraic hulls of the I';.

THEOREM 2. Suppose that T\M is compact, M = & and T' =Ty XT,.
Then there is a T-invariant isometric splitiing M= M1 XM’ where
T1(My) = My and T\ M, is compact. If Ty is centerless then T's acts triv-
sally on My. If T' is centerless then there is a T-invariant isometric
splitting M = M1 X M, inducing an isometric splitting T\ M = (T'1\ M1)
X (T\My).

Proor. I has center Z =2, XZ; where Z; is the center of I';. Corol-
lary 3 gives a I'-invariant isometric splitting M = M* X E where E is
euclidean and Z is a translation lattice on E. If Z5 {1} we replace T’
by I'*=T'/Z and M by M* = M /E, lowering the dimension but retain-
ing our hypothesis. Repeating this construction we eventually replace
I' by a centerless group. Now we may assume that I has trivial center.

If SCM, let C(S) denote its convex hull, intersection of all closed
convex subsets of M containing S.

Choose a compact set DoC M with I'-Dy= M, and consider the
closed convex set D= C(I'y-Do)N\CTy-Dy). We prove that D is com-
pact. If v1&I'y then §,, is concave and bounded on I':-Dy, thus
bounded on C(T's- Dy). If v2 &, similarly §,, is bounded on C(I'y- Dy).
If y €T now 8. is bounded on D. If D is noncompact it has a sequence
{p,} — o0, and I" has distinct elements «;, with a;(p;) ED,. If 0 ET the
dlsplacements Sujoait(aipi) =8,(p;) are bounded, so {a,oai } is
finite because D, is compact. Passing to a subsequence now a;oo; " is
independent of <. Apply the argument in order to the elements of a
finite generating set for I'. Now the ayo; ' are central and distinct in
T'. AsT has trivial center, D is proved compact.

@, is the class of all closed convex I's-invariant sets @ #NCI'y-D
(=C('1-Dy)). It is partially ordered by inclusion and its elements
meet the compact set D, so @ has a minimal element N,. @ is the class
of all closed convex I'i-invariant sets N & in M where dim N =
dim Ny, I\ NV is compact, and pEN implies N =C(I'1p); NoE Q. If N,
N'& @ then p—p(p, N') assumes its minimum a=0 on N, say at po.
N=C(I'1po) and the arguments of Lemma 1 imply p(p, N’) =a for all
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pEN. Now C(NUN') splits isometrically in M as N XTI where p XTI
is the minimal geodesic segment from p to N’. In particular, distinct
sets in @ are disjoint.

As T\M is compact every CI'(p)) =M. Thus CTs-No) =M. If
g & M now there is a unique element V& @ through g.

Let N&@. If &AN choose p in the interior °NV and let J be the
geodesic ray from p through $. Let ¢&J beyond §, so g&N. Let N’
€ @ through ¢. Since C(N\UN’) = N X I, the triangle with vertices p,
g and r = (p XI)N N’ has right angles at p and r, which is impossible.
Thus N = . As N is convex, °N is totally geodesic in M. Thus N is
totally geodesic without boundary in M.

Now @ is a foliation of M by closed totally geodesic submanifolds;
and N, N'E@ implies C(N\\JN")=NX1I is an isometric splitting as
above. Thus the tangent spaces of the elements of @ define a smooth
T-invariant parallel distribution on M. With M;=N, now M =M,
X M, T-invariant isometric splitting. T'y(My) = My, T'1\\ M1 is compact
and I'y acts trivially on M’.

Similarly M = M"' X M,, I'-invariant isometric splitting, such that
T2 (M,) = M,, T2\ M, is compact and I'; acts trivially on M. Note
M = M1 X M,, affine splitting.

Under M =M XM’, I'; acts on M, as a group 2 of isometries that
centralize I'1. Thus every 0 &2 is of bounded displacement on Mj,
hence [10] is a translation along the euclidean factor. Let 1#0E&3.
Then M;=L XN, I'-invariant isometric splitting, where ¢ translates
the lines L Xx, x €N. M, =T1\M, is fibred by the closures T, of the
images of the L Xx. The T, are flat totally geodesic tori whose tangent
spaces form a parallel distribution on M;. Choose a nontrivial circle
group 7= {1'-,} of isometries of M; generated by a parallel vector field
tangent to the 7%, such that 71=1 and 7;#1 for 0<¢{<1. Then 7
lifts to a 1-parameter group 7= {7,} of isometries of M centralized by
Ty, and 1#7,ETy. That contradicts triviality of the center of I'y.
Thus = = {1} and so I'; acts trivially on M;. Similarly T; acts trivially
on M,.

Under the I'-invariant isometric splittings M"' X My=M = M X M’,
T'; acts trivially both on M and on Mi. Thus M;=M". Similarly
My=M'. Now the affine splitting M= M;XM; is isometric. The
theorem follows. Q.E.D.
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