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1. Introduction. Let M be a. complete simply connected riemannian 
manifold of dimension n and sectional curvature K^O. Working 
with closed geodesically convex subsets 0 5̂  MQ M, we use the fact 
(see [4] or [ó]) that M is a topological submanifold of M of some 
dimension k, O^kSn, with totally geodesic interior °Mand possibly 
empty boundary dM. Note that M is star-shaped from every point, 
thus contractible, and in particular simply connected. 

Consider a properly discontinuous group T of homeomorphisms 
of M that acts by isometries on °M. If the elements of T satisfy the 
semisimplicity condition described below (automatic if T\M is com­
pact), and if S is a solvable subgroup of T, then Theorem 1 exhibits 
a flat totally geodesic S-stable subspace EC.M, complete in M, such 
that 2 has finite kernel on E and 2 \ E is compact. Thus S is an ex­
tension of a finite group by a crystallographic group of rank dim E. 
In particular, 

(i) 2) is finitely generated, 
(ii) if 2 \ M is compact, then M is a complete flat totally geodesic 

subspace of M, and 
(iii) if T\M is a manifold, then the image of E in T\M is a compact 

totally geodesic euclidean space form. 
Theorem 1 extends and unifies several results concerning the case 

where M = M and T\M is a compact manifold. Those results are the 
classical theorem of Preissmann [7] which says that if K<0 then 
every nontrivial abelian subgroup of T is infinite cyclic, Byers' exten­
sion [2] of Preissmann's theorem to solvable subgroups of T, the 
case [lO] where the elements of S are bounded isometries of M, the 
case [ l l ] where S is central in T, and the case [ l l ] where Y is nil-
potent. Theorem 1 was known [9 ] in the case where M is riemannian 
symmetric and T\M is compact. The case where M= M and T\M is 
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a compact manifold recently was independently obtained by S. T. 
Yau [12]. 

Theorem 2 concerns the case where T\M is compact, dM = 0, 
and T is a direct product r i X r 2 . If Ti is centerless, it provides a l'­
invariant isometric splitting M = Mi X M' where T2 acts trivially on 
Mi and Ti\ikfi is compact; if T is centerless it provides an isometric 
splitting r \ M = ( r i \ M i ) X ( r 2 \ A f 2 ) . The case where T\M is a real 
analytic manifold recently was independently studied by B. Lawson 
a n d S . T. Yau [S]. 

The main results of this paper were presented at a seminar in 
honor of the hundredth birthday of É. Cartan, at the University of 
Paris in June 1970. Parts of this paper were the subject of lectures 
by the authors at Rutgers University, Columbia University, M.I.T., 
and S.U.N.Y. at Stony Brook, between October 1969 and April 1970. 

2. The flat subspace. Let p denote metric distance on Ê. Given 
Y £ r we have the displacement function 8y(p)=p(p1 yp)^0 on M. 
I t is known [ l ] that S7 is concave, i.e. that 8y o c is a real concave 
function for every geodesic c of M. Therefore, given any real number 
a, the set Cy~ [pÇE.M\ ôy(p) Sa] is convex. If Y ' G T commutes with 
y then y'(Cy) = Cy; in particular Cy is Y-invariant. If ôy assumes its 
infimum ay^0 on M, then we say that y is semisimple and denote 
Cy = Cy

y the minimal set of 7. This term is based on the symmetric 
space case [9, Lemma 3.6]; see [ó]. Through every point p£:Cy there 
is a 7-invariant geodesic line contained in Cy, which may be reduced 
to a fixed point of 7. From now on we assume that every element of 
T is a semisimple isometry of M. I t is classical [3] that this condition 
is satisfied if T\M is compact. 

LEMMA 1. If 0T^CQM is closed, convex and invariant under yE:T 
then CC\Cy^0. 

PROOF. First suppose that 7 has no fixed point. We adapt an argu­
ment from [lO, p. 16]. Let L(ZCy be an invariant line of 7. There 
exist pE:L and g £ C such that p(p, q) =p(L, C) because 7 induces a 
nontrivial translation on L. Consider the quadrangle Q with vertices 
Pi <Z> Ç./:=yq and p' —yp. The geodesic segments from p to q, and from 
p' to q\ realize the distance from L to C. Since C is convex, Q has all 
interior angles^7r/2. Using K^O it follows that Q is a flat totally 
geodesic rectangle, so dy(q) =p(g, q') —p(p, p') = ày(p). T h u s ^ G C n C ^ . 

Next suppose that 7 has a fixed point p. We imitate the preceding 
argument with p — p'. If q^q' then Q is the triangle with vertices p, 
q and q'. Q is flat and totally geodesic in M and the sum of its interior 
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angles is >7r. Thus q = q', so ôy(q) = 0 = oy(p)1 and g £ C P \ C 7 as 
before. Q.E.D. 

LEMMA 2. Let y CET have infinite order {i.e. no fixed points). Then 
the minimal set Cy splits isometrically in M as DXE, where D<Z_M is 
convex and dXE is the y-invariant line through dÇ.D. 

PROOF. The arguments of [lO] remain valid for the manifold Cy, 
because Cy is convex and S7 > 0 is constant on Cy. Q.E.D. 

THEOREM 1. Let 2 be a solvable subgroup of T. Then M has a flat 
totally geodesic astable subspace E such that 

(i) E is complete in M> 
(ii) 2 acts with finite kernel <3> on E, and 
(iii) H\E is compact. 
In particular, 2 is finitely generated and is an extension of the finite 

group $ by a crystallographic group of rank —dim E. 

PROOF. First suppose 2 abelian. If 5 C 2 denote Cs^ftaes Cc. Let 
T be the torsion subgroup of S. If TT^ {1} let 1 ^ r C T ; then dim CT 

<dim M and T acts as a torsion abelian group on CT. By induction 
on dimension now T has a fixed point on CT. Thus T is finite and 
CT?£0. If (Ti£2— T then Cffl meets CT by Lemma 1, so CGXC\CT 

= DiXEl as in Lemma 2. This starts the recursion with S\ = TVJ {ai}. 
Now suppose {(Ti, • • • , <rk}QSkC2 such that Csk = DkXEk

f where 
Ek is a flat totally geodesic ^-dimensional subspace complete in M, 
such that each dXEk is stable under every aÇzSk and is spanned by 
the cri-invariant lines through d. 2 preserves the splitting and 
{<Ti, • • -, <Tk}\Ek is compact, so 2 induces a properly discontinuous 
group 2 of isometries of Dk. Let Tk denote the torsion subgroup of 2 ; 
it consists of all elements with fixed points on Dk, so 2fc = {o-£S | a pre­
serves some dXEk} is its inverse image in S. Let Dk denote the mini­
mal set of Tk on Dk. Then Cxk = Dk XEk as above, and no a^^k pre­
serves any drXEk. If 2 ^ 2 * choose cr&+i£:2 — Xk and define Sk+i 
— 2* \J {crk+i}. CVfc+i meets Cs* by Lemma 1, and their intersection 
Csk+i — DXL as in Lemma 2. As cr^i cannot preserve any dfXEk of 
Cs* now C S J ^ ^ A H - I X - E * 4 " 1 with the properties corresponding to 
those of DkXEk. As dim M< <*> this recursion terminates. Theorem 
1 is proved for the case where 2 is abelian. 

Let A be the last non trivial term in the derived series of 2 . We 
have just seen that CA = H «SA C« is of the form DXEA where E A is a 
flat totally geodesic subspace complete in M such that A has finite 
kernel on EA and -4 \ E A is compact. Note that CA is 2-stable and that 
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the elements of 2 preserve its splitting as DXEA- Let 2 denote the 
group of transformations of D induced by S. As A\EA is compact, 
proper discontinuity of 2 on M, thus on CA, forces proper discon­
tinuity of 2 on D. As A acts trivially on D, 2 = 2 / 5 where A(ZBy so 
the derived series of 2 is shorter than that of 2 . By induction on the 
length of the derived series now D has a flat totally geodesic subspace 
F with properties (i), (ii) and (iii) of Theorem 1 relative to 2. Now 
E = FXEA has the required properties relative to 2 . Q.E.D. 

The proof of Theorem 1 did not really use discontinuity. We drop 
that condition on 2 by modifying Theorem 1 as follows. 

THEOREM 1'. Let Hi be a solvable group of semisimple isometries of M. 
Let CIM(2) denote the closure of Hi in the Lie group of all isometries of M. 
Then M has a flat totally geodesic C!M(2) -stable subspace E such that 

(i) E is complete in M, 
(ii) cljy(2) acts with compact kernel on E, and 
(iii) C 1 M ( 2 ) \ E is compact. 
In particular every element of C1M(2) is a semisimple isometry of M. 

{Modify the argument of Theorem 1 as follows. Omit all mention 
of discontinuity. For 2 abelian let °T be the torsion subgroup and 
r = clj jf(°r)n2; then CIM(0T)=CIM(T) and is compact, and C°T 
= CC\M{T)Ï60. In the recursion step for 2 abelian let °Tk be the torsion 
subgroup of 2 and Tk = clDk(°Tk)r\2. Then the argument proves 
Theorem 1'.} 

3. Some consequences of Theorem 1. The following is the case in 
which r is the fundamental group of T\M. I t includes the case in 
which T\M is a manifold. 

COROLLARY 1. Suppose that T acts freely on M and that 2 is a solvable 
subgroup of V. In the notation of Theorem 1, 2 is a Bieberbach group 
acting freely on E, and 2 \ E is a compact euclidean space form. 

PROOF. 2 acts freely on M, hence is torsion free, so $ = {1}. Thus 
2 is a torsion free crystallographic group on E, i.e. is a Bieberbach 
group. Q.E.D. 

We specialize Corollary 1 to the motivating case of Theorem 1. 

COROLLARY 2. Let M be a compact riemannian manifold of sectional 
curvature K S 0. Let 2 be a solvable subgroup of the fundamental group 
iri(M). Then 2 is a Bieberbach group of some rank k, O^&^dim M, 
and ~M contains a closed totally geodesic k-dimensional euclidean space 
form. In particular, wi(M) has a solvable subgroup of finite index if and 
only if M is flat (i.e. is a compact euclidean space form). 
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The following corollary is known [ l l , Theorem 2.1] in the case 2) 
is central in T, and is related to Theorem 2. 

COROLLARY 3. Assume Y\M compact and let 25 be a solvable normal 
subgroup of T. Then M — DXE isometrically in M, where E is the 
euclidean space corresponding to 2! in Theorem 1, and where Y preserves 
this product decomposition of M. 

PROOF. In the notation of Theorem 1, 2 =2)/$ is a crystallographic 
group on E. Let A =A/& be its translation subgroup. $ is a charac­
teristic subgroup of 2), and A is a characteristic subgroup of 2, so A 
is a normal subgroup of T. Conjugation by any 7 £ T induces a norm-
preserving automorphism of the lattice A. If aÇ^A now the T-con-
jugacy class of a is finite, so S« is bounded. Thus [lO] ôa is constant, 
and if ceT^I then M — D\XEX where dXE1 is the ce-invariant line 
through d^D. The recursion technique of Theorem 1 now gives 
M = DXE where E corresponds to A, thus also to 2 , in the statement 
of Theorem 1. As A is normal in Y this decomposition is invariant 
under every element of T. Q.E.D. 

COROLLARY 4. Let M be a compact riemannian manifold of sectional 
curvature K^O. Let lï be a solvable normal subgroup ofwi(M). Then M 
has parallel orthogonal foliations 3D and 8 such that dim 2D+dim 8 
= dim M and the leaves of 8 are flat closed totally geodesic submanifolds 
of dimension equal to the rank of X as a Bieberbach group. In particular, 
if 7Ti(M) is solvable then M is flat. 

PROOF. Let M be the universal riemannian covering manifold of My 

so M = DXE as in Corollary 3. Let £) (resp. 8) be the foliation of M 
whose leaves are the images of the DXe (resp. of the dXE). Q.E.D. 

Our last corollary answers a question raised by S. T. Yau in the case 
where Y is free abelian and M is assumed complete. 

COROLLARY 5. Assume that M has empty boundary, but do not as­
sume that the elements of V are semisimple isometries of M. Suppose 
that T has a subgroup 2) of finite index that is isomorphic to a discrete 
uniform subgroup of a simply connected solvable Lie group S with 
dim 5 = dim M. Then M is flat and complete in M and Y\M is compact 
(so Y is a crystallographic group on ikf), and S is a vector group. 

PROOF. Both M and 5 are acyclic, and S is torsion free because 5 is 
torsion free, so M—>X\M and S-^2\S are universal 25-bundles. Thus 
S \ M and 2!\S are homotopy equivalent. Let n be the smallest integer 
such that i ï« (2 \S ; Z2) = 0 for a>n\ then w = dim 2 \ 5 because S \ 5 is 
compact, so HnÇ£\M; Z2) 5^0. If the w-manifold 2J\M were noncom-
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pact then [8, Theorem 6.4] we would have Hn(2\M; Z 2 )=0 . Now 
S\Jkf is compact, hence flat by Corollary 2, and the assertions on M 
and T\M follow. Thus we may assume 2 free abelian and the assertion 
on S follows. Q.E.D. 

4. The splitting theorem. The following result implies a rigidity 
theorem for metrics of nonnegative curvature on compact product 
manifolds. If M is a riemannian symmetric space of noncompact type, 
it can be obtained by considering the algebraic hulls of the I\\ 

THEOREM 2. Suppose that T\M is compact, dM = 0 and r = r i X r 2 . 
Then there is a T-invariant isometric splitting M=MiXM' where 
Ti(Afi) = Mi and Ti\Mi is compact. If I \ is centerless then T2 acts triv­
ially on Mi. If T is centerless then there is a T-invariant isometric 
splitting M = Mi X M2 inducing an isometric splitting T\M = (Fi\Mi) 
X(T2\M2). 

PROOF. T has center Z = ZiXZ2 where Zi is the center of I \ . Corol­
lary 3 gives a T-invariant isometric splitting M = M*XE where E is 
euclidean and Z is a translation lattice on E. If Z ^ {1} we replace T 
by r * =T/Z and M by M* = M/E, lowering the dimension but retain­
ing our hypothesis. Repeating this construction we eventually replace 
r by a centerless group. Now we may assume that T has trivial center. 

If SC.M, let C(S) denote its convex hull, intersection of all closed 
convex subsets of M containing S. 

Choose a compact set D0C.M with T'D0 = M, and consider the 
closed convex set D = C(Ti-Do)r\C(T2-D0). We prove that D is com­
pact. If YiGTi then STl is concave and bounded on T2'D0l thus 
bounded on C(T2-D0)- If Y2£r2 , similarly ô72 is bounded on C(Ti-D0). 
If Y £ T now ôy is bounded on D. If D is noncompact it has a sequence 
{pi} —> oo, and T has distinct elements at-, with «»•(£,•) £Z>0. If <x GT the 
displacements ôai<rai-^(aipi)=ô<x(pi) are bounded, so {aiaa^1} is 
finite because DQ is compact. Passing to a subsequence now aiaa^1 is 
independent of i. Apply the argument in order to the elements of a 
finite generating set for V. Now the aia^1 are central and distinct in 
T. As T has trivial center, D is proved compact. 

Cfco is the class of all closed convex Ti-invariant sets 07£NC.Yi-D 
(=C(TI-DO)). I t is partially ordered by inclusion and its elements 
meet the compact set D, so (£0 has a minimal element No. (& is the class 
of all closed convex Ti-invariant sets N 9^0 in M where dim N = 
dim No, Ti\Nis compact, and pGNimplies N = CÇCip) ;NöE&.IiN, 
iV'GCt then p^pip, N') assumes its minimum a^O on N, say at p0. 
N= C(Tipo) and the arguments of Lemma 1 imply p(p, N') =a for all 
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PEN. Now C(NKJN') splits isometrically in M as NXI where pXl 
is the minimal geodesic segment from p to N'. In particular, distinct 
sets in Q are disjoint. 

As T\M is compact every C(T(p)) = M. Thus C(T2• N0) = If. If 
qÇzM now there is a unique element iV£<$ through q. 

Let NE a. If pEdN choose £ in the interior °N and let J be the 
geodesic ray from p through p. Let qEJ beyond p> so g£iV. Let iV' 
GCt through g. Since C(N^JN')=NXI, the triangle with vertices p, 
q and r = (pXI)r^Nf has right angles at £ and r, which is impossible. 
Thus dN= 0. As N is convex, °N is totally geodesic in M. Thus iV is 
totally geodesic without boundary in M. 

Now d is a foliation of M by closed totally geodesic submanifolds ; 
and JV, iV'GG implies C(N\JN') = NXI is an isometric splitting as 
above. Thus the tangent spaces of the elements of Cfc define a smooth 
F-invariant parallel distribution on M. With Mi = N0 now M = Mi 
XM', T-invariant isometric splitting. Ti(Mi) = Mi, Ti\Mi is compact 
and Ti acts trivially on M'. 

Similarly ¥ = M / / X M 2 , T-invariant isometric splitting, such that 
r 2 (M 2 )=M 2 , r 2 \ M 2 is compact and T2 acts trivially on M". Note 
M = Mi X M2, affine splitting. 

Under M = M i X M ' , T2 acts on Mi as a group S of isometries that 
centralize IY Thus every (rG^ is of bounded displacement on Mi, 
hence [lO] is a translation along the euclidean factor. Let l ^ c G S . 
Then Mi=LXN> IYinvariant isometric splitting, where a translates 
the lines LXx} xEN. Mi = Ti\Mi is fibred by the closures Tx of the 
images of the LXx. The Tx are flat totally geodesic tori whose tangent 
spaces form a parallel distribution on Mi. Choose a nontrivial circle 
group f = {ft} of isometries of Mi generated by a parallel vector field 
tangent to the Tx, such that fi = l and f ^ l for 0 < £ < 1 . Then f 
lifts to a 1-parameter group r = {rt} of isometries of Mi centralized by 
Ti, and l ^ r i G r i . That contradicts triviality of the center of IY 
Thus S = {1} and so T2 acts trivially on Mi. Similarly I \ acts trivially 
on M2. 

Under the T-invariant isometric splittings M " X M2 = M = Mi X M\ 
T2 acts trivially both on M " and on Mi. Thus Mi = M". Similarly 
M2 = M'. Now the affine splitting M = M i X M 2 is isometric. The 
theorem follows. Q.E.D. 
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