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Let V be a partially ordered set. Then a V-set is a function A : X 
—• F from a set -X" to F. V is the set of values for -4, and X is the carrier 
oi A. lî B: Y—>V is another F-set, a morphismf: A—>B is a function 
ƒ: X—> F such that A (x) ̂ B(J(x)) for each x(EX. The category of all 
F-sets is denoted S(F). The carrier functor K: S(F)-»S assigns X to 
-4 : X—*V and/ : X—>F to ƒ: 4̂—>B, where S is the category of sets. 
See [2]. 

If F has one point, S(F)=S. If F = {0, l } , where 0 < 1 , S(F) is the 
category of pairs (X, A) of sets, where -4 C J , If F is the closed unit 
interval, S(F) is the category of "fuzzy sets", as used by Zadeh and 
others [l], [5] for problems of pattern recognition and systems 
theory. When F is a Boolean algebra, F-sets are Boolean-valued sets, 
as used by Scott and Solovay for independence results in set theory 
(however, their notion of morphism is different). 

If F is complete, S(F) is a pleasant category satisfying all Law-
vere's axioms [3] for S except choice, modulo some substitutions of 
the F-set with carrier 1 and value 0 for the terminal object. In par­
ticular, 

THEOREM 1. If V is complete, S(F) is complete and cocomplete, has 
an exponential {i.e., a coadjoint to product) and a "Dedekind-Pierce 
object" (i.e., an object which looks like the set of integers; see [3]). 

Let Poc denote the category of partially ordered classes, and let 
£ be a subcategory of Poc. Then a category <5 is ^-ordered if the power 
function <P: | c|—»Poc factors through £, where &(A) is the class of 
all equivalence classes of monies with codomain.4(/ = g if 3 an iso­
morphism h such that fh = g). Denote the image of Al±B by f (A), and 
the image of the composite A'1+Ai+B, where i is monic, by ƒ(-40-
Then <3 has associative images if it has images such that f(g(A)) 
= (fg)(A), whenever A-&+B1+C. (P can be construed as a functor when 
6 has associative images. Let CL denote the category of complete 
lattices, and call a category G if a coproduct of monies is always 
monic. 
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THEOREM 2. A CL-ordered category with associative images has 
equalizer s t inverse images, unions, intersections, and epic images. If it 
has coproducts, it is Cv 

An object P in a category 6 is monic if every arrow P—*A is monic, 
and is further atomic if every P-+A is atomic in (9 {A). P is good if the 
functor [P, ] : 6—>S is noninitial preserving. A union IM* in 6 is 
disjoint if i-&j=*AiC\Ai — 0, where 0 is the initial object. Let CDL 
be the category of completely distributive lattices, i.e., complete 
lattices satisfying the law a A V»&* = V»(aA&«). Such lattices F have 
pseudo-complement operators * : F—• F defined bya*=V{&|aA&=:0}. 
Call F G | C D L | disjointed if for each pair x, y of unequal atoms, 
x*Vy* = J, the maximal element of V, and call © disjointedly CDL-
ordered if each (P(J1) G | CDL| is disjointed. 

THEOREM 3. A category 6 is equivalent to &(V)for some V£j| CDL| 
*ƒ and o»/;y if: 

(1) 6 Aas a» atomic monic good projective generator P; 
(2) 6 Aas initial and terminal objects, 0 and I, respectively; 
(3) G Aas coproducts, which are disjoint unions; and conversely, each 

disjoint union in 6 is a coproduct in 6; 
(4) 6 Aas associative images; 
(5) G is disjointedly CDL-ordered; and 
(6) P IIP is not isomorphic to P. 

The Axioms (l)-(6) are easily verified for $(V)9 7 £ | C D L | . We 
now sketch the converse, which (surprisingly) makes no use of adjoint 
functors. Essential use is made of Theorem 2, via Axioms (4) and (5). 

Call the elements of [P, A ] the points of A. We first show the one-
pointed objects of G are the subobjects of ƒ, except 0; denote this 
lattice V. A calculation shows thatj&ch - 4 £ | G| is a disjoint union 
Uze[p,A}x**> s o by Axiom (3), A = 11 *e[p,*]**•. These facts combine 
to show that each A is a subobject of IlP>A\ the coproduct of ƒ over 
the index set [P, A ]. We then show the arrows/: A—>B in G are in 1-1 
correspondence with appropriate arrows/: [P, A]-+[P, B] in $. The 
functor E: G->S(F) defined by K(E(A)) - [P, 4 ] , E(A)(x) =***£ F, 
and JS(f) = [P, ƒ], is then shown to be full, faithful, and representative. 

The addition to Axioms (l)-(6) of either the categorical axiom of 
choice, or the condition 7=P, yields a characterization of S. For 
finite distributive lattices V, categories of F-sets with finite carrier 
are similarly characterized by all elementary axioms. 
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Page 125: _ 
Line 3. Qp/fp should read ~Qp/fbp. 
Line 9. a(4)=4» should read a(4)=4-E?-"" i 1 <V?. 
Line 10 from bottom. C* should read Cn. 


