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The AR(9M) spaces have been characterized as the r-images of
convex sets in normed linear spaces, and the A NR(91) spaces as the
r-images of open subsets of such sets. (The r-images of a space corre-
spond to the retracts of the space. See Borsuk [1] for proofs of most
of the results referred to here.) In this paper we present new charac-
terizations of these spaces. The characterizations yield some interest-
ing new results, as well as clarifications and new proofs of older
results.

1. The characterizations. The fundamental notion is that of a
guiding function, first defined (in the case of separable spaces) by
Wojdyslawski [3].

DEFINITIONS. A guiding function for a metrizable space X is a
continuous mapping g from a CW-polytope P into X such that

(i) every finite set S of vertices of P determines a simplex (denoted
by convsS) in P;

(ii) g maps the vertices of P onto a dense subset of X;

(iii) if each S,, =1, 2, - - - is a finite set of vertices of P and
limp.ew 2(Ss) =% then lim,., g(convS,) =x.

A locally guiding function for a metrizable space is a mapping g
which satisfies every condition for a guiding function except (i), which
is replaced by

(i)’ Every x€X has a neighborhood W, with the following prop-
erty: every finite set S of vertices of P such that g(S) C W, determines
a simplex convSin P.

THEOREM 1. A metrizable space is an AR(IM) if and only if it has a
guiding function.

THEOREM 2. A metrizable space is an ANR(I) if and only if it has
a locally guiding function.

For a proof of Theorem 1 in the case of separable metric spaces see
[3] and [2]. In the more general case a guiding function for an
AR(9N) space X is constructed as follows. We may assume X is a
closed subset of a convex set K in a normed linear space and r: K—X
is a retraction. If Z is any dense subset of X then in the real linear
space RZ we pick out the linearly independent set V= {v.ER" | €z},
where v,(2’) is 1 if z=2¢’ and 0 otherwise. Let P =convV (convex hull
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of V) and give P the CW topology. Now define go on V by go(v.) =2
and extend g linearly so as to be defined on every simplex in P. Then
g20(P) CK and we define the guiding function g: P—X by g=rg,.

2. Applications. The next four theorems illustrate the use of the
above characterizations. Detailed proofs of these and of related
theorems will appear elsewhere.

THEOREM 3. A sufficient condition for a metric space X to be an
AR(IN) is that it be the continuous image of a convex subset K of a
normed linear space under a mapping f which has the following property:
for each €>0 there is a § >0 such that whenever A is a finite subset of K
and diam [f(4)] <8 then diam [f(convA4)]<e.

Proor. If Z is a dense subset of K and go: P—K is defined as above
then it is a guiding function for K and g =g, is a guiding function for
X.

If X is the union of a collection of AR(9M) subsets is X an AR(IM)?
It is easy to show that if the collection consists of just two members
then a sufficient condition for X to be an AR(9N) is that these sets be
closed and that their intersection is an 4 R(9N). Also, there is an ob-
vious analogy for any finite collection (all intersections must yield
AR(9M) spaces). For an infinite collection the situation is quite differ-
ent. It is easy to find examples of a space X which is the union of an
expanding sequence of closed subsets, each of which is an AR(9M),
where X is not even locally connected (and hence not an A NR(91)).
However, we do have

THEOREM 4. If the metrizable space X is the union of an expanding
sequence {A,} of closed subsets, each of which is an AR(IM), and if
A,Cinterior Anyy for every n, then X is an AR(IM).

A subset A of a compact metric space (X, d) is strongly convex
(written SC) if to every pair of points x, y€A4 and each t&[0:1]
there corresponds a unique point 2& 4 such that d(x, 2) =td(x, y) and
d(z, v)=(1—1t)d(x, v). We then write z=ty+ (1 —£)x. A metric space
is locally strongly convex (written loc SC) if every point has a basis
consisting of SC neighborhoods. It is easy to see that a compact SC
metric space is contractible and locally contractible and hence, if
finite dimensional, is an AR(9M). Similarly, a finite dimensional com-
pact metric space in which every point has at least one SC neighbor-
hood is an ANR(91). It would be interesting to know if one can drop
the condition of finite dimensionality in either of these cases.
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THEOREM 5. A locally compact metric space which is loc SC is an
ANR(IM).

THEOREM 6. A compact metric space which ts both SC and loc SC is
an AR(IM).

The proof of Theorem § yields a proof of Theorem 6 because a
contractible A NR(IM) is an 4 R(IMN).

Proor oF THEOREM 5. We construct a locally guiding function for
X. Let Z be a dense subset of X and construct the CW polytope P as
in the introduction. We shall define a locally guiding function on P
by induction on the dimension of its simplexes. As before, define
g(v,) =¢ for each 2E&Z. For each xEX let W, denote a compact SC
neighborhood of x. For each n=1, 2, - - - let 8, denote the collection
of n-simplexes convsS such that g(S) C W, for some x. We extend g to
the simplexes in §, as follows: for any conv{ 05, v.'} in 8 we define
g(tv,+ (1 —8)vy) =tz+4 (1 —£)2’, where the operations on the right-hand
side are as defined previously. Now supposing that g has been defined
for every 8., n <k, we define g on the simplexes of 8; as follows: for
any simplex A in §; we have g(vertices A) C W, for some x, so g has
already been defined on all the proper faces of A. Let p be the bary-
center of A, and v, be any one of its vertices, and let us set g(p) =2.
Each point ¢ of A which is different from p has a unique representa-
tion g=tp+(1—1t)¢’, where ¢’ lies in a proper face of A. We define
g(g) =tg(p)+ (1 —t)g(g’). The compactness and strong convexity of
W, together imply that g is well defined and continuous on A. Con-
tinuing this process we define a locally guiding function g: P—X.
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