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1. Let X be a Banach space, and B(X) the Banach algebra of all 
bounded linear operators in X. The closed two sided ideals of B(X) 
(actually, of any Banach algebra) form a complete lattice L(X). 
Aside from very concrete cases, L(X) has not yet been determined; 
for instance, when X = lp, l ^ p < « > , L(X) is a chain (i.e., totally 
ordered) with three elements: {o}, B(X) and the ideal C(X) of com­
pact operators (see [3]). On the other hand, it is known [2, 5.23] that 
for X = Lp, Kp < oo, the lattice L(X) is not a chain. A treatment for 
X a Hubert space of arbitrary dimension can be found in [4]. We aim 
to exhibit here a Banach space X such that L(X) is both "long" and 
"wide." Precisely, we have 

PROPOSITION. There exists a real Banach space X with the properties: 
(i) X is separable, isometric to its dual X*t and reflexive; 
(ii) it is possible to assign a closed two sided ideal a($) C.B(X) to each 

finite set of positive integers SF, in such a way that the mapping $-j>a($) 
is injective and inclusion preserving in both directions: ^ C g if and only 
tfa(S)Ca(S). 

The example is described below, in §3. 

2. In the sequel, all Banach spaces are real (the complex case can 
be dealt with similarly). If X, Y are Banach spaces, m(F, X) denotes 
the set of operators T£:B(X) that can be factorized through F, i.e., 
such that T = SQ for suitable bounded linear operators Q;X-*Yt 

S: Y—>X. If Y is isomorphic (as a Banach space) to its square FX F 
(X means cartesian product), then (see [6, Proposition 1.2] or [2, 
Theorem 5.13]) m(F, X) is a two sided ideal of B{X). a(Y, X) will 
denote the (uniform) closure of m(F, X); thus, if F is isomorphic to 
FX F, a( F, X) is a closed two sided ideal otB(X). 

In all that follows, subspace means closed lineal subspace; a sub-
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space F of a Banach space X is complemented if X = Y+Z for some 
subspace Z satisfying XC\Z = {0}. 

We shall need the following generalization of Theorem 5.20, in [2]. 

LEMMA 1. Let X be a Banach space, and Y a complemented subspace 
of X, isomorphic to its square FX F. Then, for an arbitrary Banach 
space Z, the following conditions are equivalent: 

(i) m(F, X)Qa(Z, X), 
(ii) F is isomorphic to a complemented subspace of Z. 

PROOF. Let PEB(X) be a projection on F (i.e., P2=P, PX= Y), 
I: Y—*Y the identity and J": F—>X the canonical injection; it is clear 
that PEnt(F, X). Let e be a positive real number such that e||P|| <1. 
Suppose now that m(F, X)Qa(Z, X). There exist thus S:Z-^X, 
Q:X->Z such that | |P-SQ||<e. Consider the operator UEB(Y) 
defined by U=I-PSQJ; since I=PJ, we see that U^PJ-PSQJ 
= P ( P - 5 0 7 , and therefore 

\\u\\*\\P\\\\P-SQ\\\\J\\*\\Ph<i. 

Hence PSQJ: Y-+Y is invertible, that is, there exists TEB(Y) such 
that I=TPSQJ=VW, where V=TPS:Z->Y and W=QJ: Y->Z. 
This means that J£m(Z, F), and from [6, Lemma 1.1] (or [2, 5.12]), 
we conclude that F is isomorphic to a complemented subspace of Z, 
as desired. The converse is obvious: if Y' is a complemented subspace 
of Z isomorphic to F, then m(F, X) =m(F', X) Cm(Z, X)Ca(Z, X). 

LEMMA 2. Assume that X, Y\, F2, • • • , Fn arc Banach spaces such 
that Yj is isomorphic to YjXYj for j = l, 2, • • - , n. Then m(Fi, X) 
+m(F2, X ) + • • • +m(F„, X)=m(F!X • • • XFn, X). 

PROOF. An inductive argument reduces the proof to the case w = 2, 
which is disposed of as follows. Since Y\ and F2 are (isomorphic to) 
complemented subspaces of FiXF2, it is clear that m(Fi, X) 
CmtFxX F2| X) and m(F2, X)Qm(Y1X F2, X), whence 

m(Yu X) + m(F2, X)Qm{Yx X F2, X). 

Conversely, if T = SQEm(YiX F2, X), where 5: FiXF2->X and 
Q: X->YXX F2 with Q(x) = (&(*), &(*)), then we define Su Y^X, 
S2: F2—>X as 

Si60»S(*O), 5 2 W«5(0 ,y) ; 

finally, let Ti, T2&B(X) be the operators ri«5iQi, r2 = S2Q2. Clearly 
r ! + r 2 = r with r iGm(Fy, X), j = l, 2, and therefore rGm(F l f X) 
+m(F2, X); the lemma follows. 
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Also, from [6, Lemma l . l ] (or [2, 5.12]) and [l, Theorem 7, p. 
205], we obtain that lor p9*q, p}£l, q*£lf the ideal m(/«, lp) is not the 
whole of B(lp). Since the ideal C(lp) of compact operator is the largest 
proper two sided ideal of B(lp) (see [3, Theorem 5.1]), it follows that 

LEMMA 3. If p, q^l, p?*q, then m(Z«, tyQCil»). 

3. Let (P be a countable set of real numbers p à 1 ; define Y as the 
product Y=H{lp; p(E(?}, where lp is the ordinary (real) sequence 
space. We denote by | x\ the norm of an element x&p, for all p. Con­
sider now the set Z((P) of all families {x9Ç-JP\ ££(P} G F such that 
]C {I XP\ 2» pÇz®} < °° (this is always the case, if (P is finite). It can be 
seen that Z((P) is a linear subspace of Y and that the norm || {#P}|| 
= (23|^J 2)1 / 2 makes Z((P) a separable Banach space; if (P is finite, 
KflO—III^; PG&}- It is clear that for each subset QC(P, the space 
Z(Q) can be identified to a complemented subspace of Z((P). Moreover, 
Z((P) is always isomorphic to its square Z((P)XZ((P) (see for instance 
[5, Proposition 3, b]). The dual (Z((P))* of Z(fl>) can be identified to 
Z((P*), where (P* is the set of conjugates £* of elements p G <P, i-e., 
l/p + l/p* = l. In particular, if 1 $ (P, then Z((P) is reflexive, and 
furthermore, if (P = (P*, then Z((P) is isometric to its dual. Therefore, 
such Z((P) satisfy condition (i) in the Proposition above. 

Let (P be a fixed countably infinite set of real numbers p>\ such that 
(P = (P*, and let X denote the space X = Z((P). For each finite subset 
ffC<p, let a(SF) C £ ( X ) be the ideal a(CF) = a(Z(9:),X). Since /(£) is 
(isomorphic to) a complemented subspace of Z(g), whenever £F C g it 
is clear (Lemma 1) that the mapping $—*a(30 is inclusion preserving. 
On the other hand, suppose that a($) Ca(g), or, equivalently, m(Z(9:), X) 
Ca(Z(S), X) . 

By Lemma 2, this inequality is equivalent to 

m(Z*, X) C a(Z(g), X), for all ^Gff. 

Lemma 1 applies, and we conclude that for ^G^, lp is isomorphic to 
a complemented subspace of Z(g). By [6, Lemma 1.1] (or [2, 5.12]) 
this amounts to 

But, again from Lemma 2, 

m(Z(9),Z*)= 2{m(Z«,Z*>); ? G g } . 

Now, if pCg , from Lemma 3 it follows that m(Z«, lp)QC(lp) for all 
gG9, or 3(Z*)=m(Z(g), lp)QC(lp), absurd. Then pE<3 for all ^Gff, 
and this means that SFCg. Therefore it was shown that ^ C g if and 
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only if a (50 Ca (g). This implies that SF—>a(SF) is one-to-one, and the 
Proposition is proved. 
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