- 9. S. Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tôhoku Math. J. 2 (1952), 115-121.
- 10. E. Thoma, Über unitäre Darstellungen abzühlbar, diskreter Gruppen, Math. Ann. 153 (1964), 111-138.

University of Washington, Seattle, Washington 98105

TWO SIDED IDEALS OF OPERATORS

BY HORACIO PORTA

Communicated by Paul Halmos, September 30, 1968

1. Let X be a Banach space, and B(X) the Banach algebra of all bounded linear operators in X. The closed two sided ideals of B(X) (actually, of any Banach algebra) form a complete lattice L(X). Aside from very concrete cases, L(X) has not yet been determined; for instance, when $X = l^p$, $1 \le p < \infty$, L(X) is a chain (i.e., totally ordered) with three elements: $\{0\}$, B(X) and the ideal C(X) of compact operators (see [3]). On the other hand, it is known [2, 5.23] that for $X = L^p$, 1 , the lattice <math>L(X) is not a chain. A treatment for X a Hilbert space of arbitrary dimension can be found in [4]. We aim to exhibit here a Banach space X such that L(X) is both "long" and "wide." Precisely, we have

PROPOSITION. There exists a real Banach space X with the properties:

- (i) X is separable, isometric to its dual X*, and reflexive;
- (ii) it is possible to assign a closed two sided ideal $\alpha(\mathfrak{F}) \subset B(X)$ to each finite set of positive integers \mathfrak{F} , in such a way that the mapping $\mathfrak{F} \rightarrow \alpha(\mathfrak{F})$ is injective and inclusion preserving in both directions: $\mathfrak{F} \subseteq \mathfrak{F}$ if and only if $\alpha(\mathfrak{F}) \subseteq \alpha(\mathfrak{F})$.

The example is described below, in §3.

2. In the sequel, all Banach spaces are *real* (the complex case can be dealt with similarly). If X, Y are Banach spaces, $\mathfrak{m}(Y,X)$ denotes the set of operators $T \in B(X)$ that can be factorized through Y, i.e., such that T = SQ for suitable bounded linear operators $Q: X \to Y$, $S: Y \to X$. If Y is isomorphic (as a Banach space) to its square $Y \times Y$ (\times means cartesian product), then (see [6, Proposition 1.2] or [2, Theorem 5.13]) $\mathfrak{m}(Y,X)$ is a two sided ideal of B(X). $\mathfrak{a}(Y,X)$ will denote the (uniform) closure of $\mathfrak{m}(Y,X)$; thus, if Y is isomorphic to $Y \times Y$, $\mathfrak{a}(Y,X)$ is a *closed two sided ideal* of B(X).

In all that follows, subspace means closed lineal subspace; a sub-

space Y of a Banach space X is complemented if X = Y + Z for some subspace Z satisfying $X \cap Z = \{0\}$.

We shall need the following generalization of Theorem 5.20, in [2].

LEMMA 1. Let X be a Banach space, and Y a complemented subspace of X, isomorphic to its square $Y \times Y$. Then, for an arbitrary Banach space Z, the following conditions are equivalent:

- (i) $\mathfrak{m}(Y, X) \subseteq \mathfrak{a}(Z, X)$,
- (ii) Y is isomorphic to a complemented subspace of Z.

PROOF. Let $P \in B(X)$ be a projection on Y (i.e., $P^2 = P$, PX = Y), $I: Y \to Y$ the identity and $J: Y \to X$ the canonical injection; it is clear that $P \in \mathfrak{m}(Y, X)$. Let ϵ be a positive real number such that $\epsilon ||P|| < 1$. Suppose now that $\mathfrak{m}(Y, X) \subseteq \mathfrak{a}(Z, X)$. There exist thus $S: Z \to X$, $Q: X \to Z$ such that $||P - SQ|| < \epsilon$. Consider the operator $U \in B(Y)$ defined by U = I - PSQJ; since I = PJ, we see that U = PJ - PSQJ = P(P - SQ)J, and therefore

$$||U|| \le ||P|| ||P - SQ|| ||J|| \le ||P||\epsilon < 1.$$

Hence $PSQJ: Y \rightarrow Y$ is *invertible*, that is, there exists $T \in B(Y)$ such that I = TPSQJ = VW, where $V = TPS: Z \rightarrow Y$ and $W = QJ: Y \rightarrow Z$. This means that $I \in \mathfrak{m}(Z, Y)$, and from [6, Lemma 1.1] (or [2, 5.12]), we conclude that Y is isomorphic to a complemented subspace of Z, as desired. The converse is obvious: if Y' is a complemented subspace of Z isomorphic to Y, then $\mathfrak{m}(Y, X) = \mathfrak{m}(Y', X) \subseteq \mathfrak{m}(Z, X) \subseteq \mathfrak{a}(Z, X)$.

LEMMA 2. Assume that X, Y_1, Y_2, \dots, Y_n are Banach spaces such that Y_j is isomorphic to $Y_j \times Y_j$ for $j = 1, 2, \dots, n$. Then $\mathfrak{m}(Y_1, X) + \mathfrak{m}(Y_2, X) + \dots + \mathfrak{m}(Y_n, X) = \mathfrak{m}(Y_1 \times \dots \times Y_n, X)$.

PROOF. An inductive argument reduces the proof to the case n=2, which is disposed of as follows. Since Y_1 and Y_2 are (isomorphic to) complemented subspaces of $Y_1 \times Y_2$, it is clear that $\mathfrak{m}(Y_1, X) \subseteq \mathfrak{m}(Y_1 \times Y_2, X)$ and $\mathfrak{m}(Y_2, X) \subseteq \mathfrak{m}(Y_1 \times Y_2, X)$, whence

$$\mathfrak{m}(Y_1, X) + \mathfrak{m}(Y_2, X) \subseteq \mathfrak{m}(Y_1 \times Y_2, X).$$

Conversely, if $T = SQ \in \mathfrak{m}(Y_1 \times Y_2, X)$, where $S: Y_1 \times Y_2 \to X$ and $Q: X \to Y_1 \times Y_2$ with $Q(x) = (Q_1(x), Q_2(x))$, then we define $S_1: Y_1 \to X$, $S_2: Y_2 \to X$ as

$$S_1(y) = S(y, 0), S_2(y) = S(0, y);$$

finally, let T_1 , $T_2 \\\in B(X)$ be the operators $T_1 = S_1Q_1$, $T_2 = S_2Q_2$. Clearly $T_1 + T_2 = T$ with $T_j \\in \\mathbb{m}(Y_j, X)$, j = 1, 2, and therefore $T \\in \\mathbb{m}(Y_1, X) + \\mathbb{m}(Y_2, X)$; the lemma follows.

Also, from [6, Lemma 1.I] (or [2, 5.12]) and [1, Theorem 7, p. 205], we obtain that for $p \neq q$, $p \geq 1$, $q \geq 1$, the ideal $m(l^q, l^p)$ is not the whole of $B(l^p)$. Since the ideal $C(l^p)$ of compact operator is the largest proper two sided ideal of $B(l^p)$ (see [3, Theorem 5.1]), it follows that

LEMMA 3. If p, $q \ge 1$, $p \ne q$, then $\mathfrak{m}(l^q, l^p) \subseteq C(l^p)$.

3. Let \mathcal{O} be a countable set of real numbers $p \geq 1$; define Y as the product $Y = \Pi\{l^p; p \in \mathcal{O}\}$, where l^p is the ordinary (real) sequence space. We denote by |x| the norm of an element $x \in l^p$, for all p. Consider now the set $l(\mathcal{O})$ of all families $\{x_p \in l^p; p \in \mathcal{O}\} \in Y$ such that $\sum \{|x_p|^2, p \in \mathcal{O}\} < \infty$ (this is always the case, if \mathcal{O} is finite). It can be seen that $l(\mathcal{O})$ is a linear subspace of Y and that the norm $\|\{x_p\}\| = (\sum |x_p|^2)^{1/2}$ makes $l(\mathcal{O})$ a separable Banach space; if \mathcal{O} is finite, $l(\mathcal{O}) = \prod \{l^p; p \in \mathcal{O}\}$. It is clear that for each subset $\mathbb{Q} \subset \mathcal{O}$, the space $l(\mathbb{Q})$ can be identified to a complemented subspace of $l(\mathcal{O})$. Moreover, $l(\mathcal{O})$ is always isomorphic to its square $l(\mathcal{O}) \times l(\mathcal{O})$ (see for instance [5, Proposition 3, b]). The dual $(l(\mathcal{O}))^*$ of $l(\mathcal{O})$ can be identified to $l(\mathcal{O}^*)$, where \mathcal{O}^* is the set of conjugates p^* of elements $p \in \mathcal{O}$, i.e., $1/p+1/p^*=1$. In particular, if $1 \notin \mathcal{O}$, then $l(\mathcal{O})$ is reflexive, and furthermore, if $\mathcal{O} = \mathcal{O}^*$, then $l(\mathcal{O})$ is isometric to its dual. Therefore, such $l(\mathcal{O})$ satisfy condition (i) in the Proposition above.

Let \mathfrak{O} be a fixed countably infinite set of real numbers p>1 such that $\mathfrak{O}=\mathfrak{O}^*$, and let X denote the space $X=l(\mathfrak{O})$. For each finite subset $\mathfrak{F}\subseteq\mathfrak{O}$, let $\mathfrak{a}(\mathfrak{F})\subseteq B(X)$ be the ideal $\mathfrak{a}(\mathfrak{F})=\mathfrak{a}(l(\mathfrak{F}),X)$. Since $l(\mathfrak{F})$ is (isomorphic to) a complemented subspace of $l(\mathfrak{F})$, whenever $\mathfrak{F}\subseteq\mathfrak{F}$ it is clear (Lemma 1) that the mapping $\mathfrak{F}\to\mathfrak{a}(\mathfrak{F})$ is inclusion preserving. On the other hand, suppose that $\mathfrak{a}(\mathfrak{F})\subseteq\mathfrak{a}(\mathfrak{F})$, or, equivalently, $\mathfrak{m}(l(\mathfrak{F}),X)\subseteq\mathfrak{a}(l(\mathfrak{F}),X)$.

By Lemma 2, this inequality is equivalent to

$$\mathfrak{m}(l^p, X) \subseteq \mathfrak{a}(l(\mathfrak{g}), X), \quad \text{for all } p \in \mathfrak{F}.$$

Lemma 1 applies, and we conclude that for $p \in \mathfrak{F}$, l^p is isomorphic to a complemented subspace of $l(\mathfrak{g})$. By [6, Lemma 1.I] (or [2, 5.12]) this amounts to

$$\mathfrak{m}(l(\mathfrak{G}), l^p) = B(l^p).$$

But, again from Lemma 2,

$$\mathfrak{m}(l(\mathfrak{G}), l^p) = \Sigma \{\mathfrak{m}(l^q, l^p); q \in \mathfrak{G}\}.$$

Now, if $p \notin \mathfrak{F}$, from Lemma 3 it follows that $\mathfrak{m}(l^q, l^p) \subseteq C(l^p)$ for all $q \in \mathfrak{F}$, or $B(l^p) = \mathfrak{m}(l(\mathfrak{F}), l^p) \subseteq C(l^p)$, absurd. Then $p \in \mathfrak{F}$ for all $p \in \mathfrak{F}$, and this means that $\mathfrak{F} \subseteq \mathfrak{F}$. Therefore it was shown that $\mathfrak{F} \subseteq \mathfrak{F}$ if and

only if $a(\mathfrak{F})\subseteq a(\mathfrak{G})$. This implies that $\mathfrak{F}\rightarrow a(\mathfrak{F})$ is one-to-one, and the Proposition is proved.

REFERENCES

- 1. S. Banach, Théorie de opérations linéaires, Mon. Math., no. 1, Warszawa, 1932.
- 2. E. Berkson and H. Porta, Representations of B(X), J. Functional Analysis (to appear).
- 3. I. A. Feldman, I. C. Gohberg and A. S. Markus, Normally solvable operators, and ideals associated with them, Izv. Moldavsk. Fil. Akad. Nauk SSSR 10 no. 76 (1960), 51-69 (Russian).
- 4. B. Gramsch, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
- 5. A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228
- 6. H. Porta, Idéaux bilatères de transformations linéaires continues, C.R. Acad. Sci. Paris 264 (1967), 95-96.

Universidad Nacional de la Plata, Argentina