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In this note we study the hitting probability of a point r, 

h(r) = P{Xt = r or X,_ = r for some 0 < t < oo}, 

for a d-dimensional right continuous process {Xt} t*o with stationary 
independent increments and X0 = 0 with probability 1. It is well 
known (see [7, §62], [l, §3.4], or [5, §4]) that the characteristic 
function for any such process is of the form 

(1) JE***, = exp jiX-a* - §Q(X)/ + t ƒ [ ƒ ' * - 1 - t + ? J ^ ) } > 

X = (Xi, • • • , \d)€zRdt aÇzRd> Q a nonnegative definite quadratic 
form and v a Borel measure on Rd— {0} for which 

I min(l, | y\2)v(dy) < oo. 

Our purpose is to determine when h(r) is strictly positive, respec­
tively zero. An old and obvious result is that h(r) >0 for all r if Xt is 
Brownian motion. Somewhat more difficult is the behavior of h(r) for 
symmetric stable processes of index a in dimension one. For such 
processes it was shown by Levy, Erdös and Kac (see [6]; also [12] 
for simplified proofs) that h(r) >0 for all rER il Ka^2 and h(r) =0 
for all r&R if a ^ l . It will be seen that this result is typical for the 
general situation as well. The motivation for our study was a problem 
of Chung's [2], [3], which asked to solve the one-dimensional convo­
lution equation 

(2) f a(r - s)W(ds) « 1, r > 0. 
J Q-. 

Here a is a given decreasing right continuous function on [0, 00) such 
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that2 

I / » CO 

I min(l , y)d<r(y)\ < <», 
J a 

whereas one looks for a Borel measure W which satisfies (2). Using 
Laplace transforms, Neveu [ i l ] and Chung [2], [3] found what the 
only possible solution of (2) could be. Let {Xt} t*o be a 1-dimensional 
right continuous process with stationary independent increments 
with characteristic function 

(4) Eeax' = exp < - / f (e** - l)d<r(y)> , 

and put3 

W(A) - £ (*lA(Xd<U= rP{XteA}dt 
(5) J o *J o 

= expected amount of time spent in A by {X t}. 

For this choice of W (2) is satisfied for (Lebesgue) almost all r > 0 and 
no other Borel measure W will satisfy (2) for almost all r > 0 . Chung 
[2] raised the problem whether (S) solves (2) for allr>0 and showed 
that this is indeed the case if <r(0) < 00 or if <r satisfies certain smooth­
ness assumptions ([2], [3]; see also [lO, §IV]). Neveu [ i l , lemma on 
p. 40] already stated that (2) holds for all r > 0 with W as in (5), but 
his proof is not convincing (see footnote 2 in [3]) and another recent 
proof [8], also contains a gap. (See [lO, just before the second proposi­
tion in §IV] as well as [9].) 

Our attention was drawn to this problem by P. A. Meyer4 when he 
pointed out to us that in case <r(0) = 00, one has (with W given by (5))6 

ƒ. 
H-

*(r-s)W(ds) 

(6) , , 
= l - ? { l t = r o r I t . = f for some 0 < / < 00 }, 

* We allow <r(0) =a(0+) - 00 ; but 0^<r(y) < 00 for all y >0 by (3). 
3 IA(') is the characteristic function of A. 
* We wish to thank Professor Meyer for introducing us to this nice problem and 

especially for pointing out the purely probabilistic nature of the problem as ex­
hibited by (6). It was this observation which led us to study the hitting probability 
Hr). 

* (6) remains valid even if Xt has a positive drift, i.e., if (4) is generalized to 
E ^ « « e x p {iat-t /$-(**-~l)dv(y) with a^O. 
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(see §IV of [lO]; another proof of (6) is contained in Theorem 1 of 
[4]). This reduces Chung's problem in the case <r(0) = 00 to showing 
&(r)==0 for the X process. This fact is indeed contained in part (c) of 
Theorem 1 below. Together with Chung's result for <r(0) < 00 (see 
also §IV of [lO]) this answers Chung's question affirmatively. Theorems 
1-3 pretty much determine when h(r) >0, resp. h(r) = 0. To state the 
theorems for d = 1 we make one more convention. If d = 1 we shall 
always write QQs) as XV2 and if 

(7) 

then we write 

\y\v(dy)< 00 

ƒ +*> y 
j—r- v(dy) 

- 1+ y ' + M2 

and express the characteristic function of Xt as 

(8) Ee**' = exp Ua't + t I (e** - l)v{dy) > 

with a' = a—â. In particular the representation (8) will be used if 
K # - { 0 } ) < o o . 

THEOREM 1. Let [Xt}^o be a 1-dimensional right continuous process 
with stationary independent increments and characteristic function (1) 
with X2(T2 written f or Q(X). Then exactly the following possibilities f or 
&(•) exist: 

(a) If <r2>0 then h(r) >0 for all r. 
(b) If <r2 = 0, v(R-{0})<oo and a' = 0 tóen h(r)>0 if and only if 

r = 0orr £H = the semigroup generated by the atoms of v. 
(c) If <r2 = 0, v(R-{0}) = *>, but ft\\y\v(dy)<oo and a'=0 then 

h(r)=0for allr. 
(d) If (T2 = 0, Jt\\y\v(dy) < 00 and a'>0 together with v((- 00, 0)) 

>0 or a' <0 togetóer with K(0, 00 )) >0 then h(r)>0for all r. 
(e) If <72 = 0, / i l H K ^ X 0 0 a«d a'>0 but K ( - ° ° , 0))=0 tóen 

A(r)>0 if and only if r>0. If cr2 = 0, / i l | y | ^ ( ^ ) < « awJ a'<0 6«/ 
j/((0, 00 )) = 0, tóen A(r) >0 *ƒ and only ifr<0. 

(f) lf<r* = 0and 

/
yv{dy) = 00 together with I | 3; | *>(rf;y) < » 

0 J - 1 
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or 

/
yp(dy) < oo together with I \ y\ v(dy) 

o J -i 

then h(r)>0for all r. 
(g) If <r* = 0 and 

/
yv(dy) = I \y\ v(dy) = oo, 

o J - I 

then either h{r) >Ofor all r or h{f) = 0 for all r. 

In case (g) of Theorem 1 both situations can arise. E.g. by the 
results in [6] and [12] quoted above, h(r) = 0 for the symmetric 
Cauchy process and h(r)>0 for the symmetric stable processes of 
index a > l . The next theorem gives a criterion to decide which case 
occurs. In most practical situations one will have a hard time apply­
ing the criterion, though. 

THEOREM 2. Under the assumptions of Theorem 1, h(r)=*0for almost 
allrÇzR if and only if 

J7 + — + J (1 - cos \y)v(dy)j 

{[7 + "T"+/ °°(1 -cos Xy)v(dy)] 
+ \a\ + ƒ (sinXy ^ W ? ) 1 \ d\ - oo 

for eachy>0. 

If PCR— {O} ) = oo we may replace "&(r) =0 for almost all rÇER" by 
*ft(r) = 0 for all rER." 

For d^2 the full list of possibilities for h{r) is even larger than in 
Theorem 1. We therefore only give a general statement valid for 
"honestly d-dimensional" processes, d*z2. 

THEOREM 3. Let {Xt} uo be a d-dimensional9 right continuous process 
with stationary independent increments and characteristic function (1) 
with d ̂  2. Ifv(Rd — F) = oo for any (d — 1)-dimensional linear sub space 
F then h(r) = 0for all r. Also h(r)=0for all r when Xt has an absolutely 
continuous distribution f or all />0 . This last case occurs if (}(•) is 
strictly positive definite. 
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The detailed proofs will appear elsewhere but we indicate a few 
steps here. First we observe that 

h(r) = P{Xt » r for some 0 < i < 00} 

by quasi-left-continuity of the X% process, and then, by the strong 
Markov property 

(9) kfy + s)^ h(r)h{s) 

(see also §IV of [lO]). The easy cases (a), (d) and (f) of Theorem 1 are 
then proved by showing 

(10) I h(r)dr = E(Lebesgue measure of range of {Xt}) > 0. 

In essence one shows in these cases that Xt has bigger fluctuations 
than can be caused by the jumps alone so that cl{Xt:t*zO}t the 
closed range of the process, has positive Lebesgue measure with prob­
ability 1. Once /i(r)>0 on a set of positive measure (as implied by 
(10)) one derives h(r) >0 everywhere from (9). Case (e) of Theorem 1 
follows from (6) (with footnote 5), the lemma on p. 40 of [ l l ] and 
(9) again. The really difficult parts are case (c) of Theorem 1, case (g) 
of Theorem 1 if h(r) is not everywhere positive, and Theorem 3 with­
out continuity assumptions for the distribution of Xt. For these cases 
we first show that h(r) =0 a.e. We then put 

Sr = inf{/ > 0: Xt = r) 

and use the following consequence of the strong Markov property:6 

U(r ƒ
• 0 0 

0 

J 0 
\dt 

0 

= l/(-€, + t)Ee~*8'. 

Lastly, one shows by a complicated renewal argument that for fixed 
7>0 , r^0 

. j 7 ( r - € , r + «) 
hm int = 0, 
Mio # ( - € , + « ) 

whence Ee">Sr=*Q and Zr(r)=0 (at least for r^0). 
• For d^2, a^Xt^bis used as an abbreviation for the simultaneous inequalities 

cti^X^^bi, »•* 1, • • • , d, on the components Xf of Xt. 
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