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All rings are associative and unitary. A ring R is a pli-ring (resp. 
ipli-ring) if every left ideal (resp. two-sided ideal) of R is of the form 
Ra for some aÇzR. Clearly, every pli-ring is a left Noetherian ipli-ring. 
A ring R is called local if R has a unique maximal left ideal. 

This note contains statements of some results concerning ideals 
and global dimensions of local left Noetherian ipli-rings. 

A few definitions are needed. Let I be an ideal (i.e., two-sided ideal) 
of a ring R. We shall give two definitions of transfinite powers of / . 
The first is: J 1 » / ; I« = I-P if a = j 3 + l ; I* = ()fi<aP if a is a limit 
ordinal. The second definition is notationally distinguished from the 
first by writing the index ordinal in a square bracket; it goes as 
follows: 

/[«Ql = ƒ; ƒ[-] = p (/Ml)» if a = fi + 1; / l - l = fi I{a*1 

if a is a limit ordinal. Note that the second definition defines trans-
finite powers only for ordinals of the form co01. For all the set-theory 
involved, we refer to [3]. 

The following theorem is basic. 

THEOREM 1. Let A be a proper prime ideal in a prime left Noetherian 
ipli-ring R. Then there exists an ordinal a such that A[<*°] = (0). Let a 
be the first such ordinal. Then A[<a(i] % A[w/?1 if y </3 Sa. The prime ideals 
of R contained in A are precisely those of the form A ^ where (JS&. 

Recall that a domain is a (not necessarily commutative) ring with­
out zero-divisors. 

THEOREM 2. Let Rbe a local semiprime left Noetherian ipli-ring with 
Jacobson radical J. Then 

(1) R is a pli-domain. 
(2) There exists an ordinal a such that J[(*"] = (0). Let a be the first 

such ordinal. For every j8<a, choose x^R such that J[Ji] =Rxp. 
(3) Every nonzero element r of R can be uniquely expressed as 

r = uxfil - - xfi$, 

where s is anonnegative integer, mi£Z+, fr< • • • <j8,ga and u is a 
unit in R. 
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(4) Every left ideal of R is two-sided. Ideals form a well-ordered set 
under reverse inclusion. Every nonzero ideal A can be uniquely written as 

A « (**fc)« • • • (tofc)-, 

where s is a nonnegative integertmi&Z+and$i< - - • <fi9£a. Further, 

A •-> ofm, + • • • + ccPhni 

is an order-isomorphism of the well-ordered set of all nonzero ideals of R 
under reverse inclusion and the set of all ordinals <&«. The same bisec­
tion is an anti-isomorphism of the monoid of all nonzero ideals of R 
under the usual multiplication and the set of all ordinals <coa under the 
usual addition. 

(5) Every ideal of R is of the form Jx for some uniquely determined 
A g wa. If the Cantor normal form of\is 

X = (ifm, + • • • + ofi^ntx 

then Ji^iKxfiJ"* • • • (ite/O*1*- In particular, J"*=*Ji*i for every 

Recall that a ring R is completely primary if R/P(R) is a domain, 
where P(R) is the prime radical of R. 

THEOREM 3. Let R be a local left Noetherian ipli-ring. Then R is a 
completely primary pli-ring, every left ideal of R is a two-sided ideal and 
the set of ideals of R is a well-ordered set under reverse inclusion. 

R is a domain if and only if the well-ordered set of nonzero ideals of 
R under reverse inclusion is order-isomorphic with the set of all ordinals 
<o)afor some ordinal a. 

More details about these rings (similar to Theorem 2) are obtained. 

THEOREM 4. Let A be a proper prime ideal in a prime left Noetherian 
ipli-ring R and let X be an ordinal such that A 1<*X] 5̂  (0). Then there exists 
a set of principal right ideals of R which form a well-ordered set under 
inclusion order-isomorphic with the set of all ordinals <X. 

Theorem 4 and a theorem of B. L. Osofsky [2] imply the following. 

THEOREM 5. Let A be a proper prime ideal in a left Noetherian ipli-
domain R and let X be an ordinal such that Al^]^(0). Then 

r. gl. dim R = 00 if card X è K», 

à n + 2 if card X ^ tfn, 0 ^ » < w , 

à 2 if card X is a nonzero integer. 
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THEOREM 6. Let A be a proper prime ideal in a pli-domain R and let 
X be an ordinal such that A{<a 15* (0). If card X = card R =» Itt* where n is 
a nonzero integer then 

r. gl. dim R = n + 1 ; 1. gl. dim JR = 1. 

/ /card XèN«, tóe» 

r. gl. dim R = 00 ; 1. gl. dim Ü = 1. 

THEOREM 7 (CF. [l]). Le/ l ^ w ^ w ^ o o . TAe» /Aere e^tó^ a left 
Noetherian domain D such that 

r. gl. dim D = w; 1. gl. dim D — m. 
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