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Since the factors in the first two sets of brackets are finite Blaschke 
products and the zero in the third is a convex combination of such, 
and since the coefficients are nonnegative and sum to 1, the proof is 
complete. 
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I. The problem of this investigation is to characterize those small 
categories X for which the inverse limit 

proj lim: ABX -+ AB 
x 

is exact. Here AB is the category of abelian groups, and ABX is the 
category of functors from X to AB. In this context I conjecture the 
following 

THEOREM I. Let X be a small category. Then the following assertions 
are equivalent: 

(1) The inverse limit proj limx: ABX-^AB is exact 
(2) For every abelian category SÏ with exact direct products y the inverse 

limit proj lim* : %x—»3I is exact. 
(3) Every connected component Y of X contains an object y together 

with an endomorphism eÇz Y (y, y) such that the following properties are 
satisfied: 

(i) y is a smallest object of F, i.e., for any object zÇzY there is a 
morphism y—>z. 

(ii) e equalizes any two morphisms with the same codomain and 
domain y, i.e., any diagram y-£±ylXz is commutative. 

At present, I can prove the equivalence of (1) and (2) and the 
implication (3)Z£(1) in general, i.e., without any additional condition 
on X. The implication (1)Z£(3) holds at least if one of the following 
conditions on X is satisfied : 
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(a) X is a monoid, i.e., has exactly one object. In this case (3) 
means that there is a right zero element eÇzX with ae *=e for all « G Z . 

(b) X satisfies the condition 
(F2')°: Every commutative diagram x£%%2-"*%* can be extended to 

a commutative diagram xçi—>x\I%xv-j>Xz. 
This condition is satisfied in particular if the connected components 

Y of X are filtered from below (see also [l, p. 7]), i.e., if X satisfies the 
condition 

(F2)° : Any diagram xCXx^ in X can be completed to a commutative 
diagram XQ—*X£XX2. 

II . The following steps are taken in the proof of Theorem I. 
Step 1. I t is clear that for any abelian category 3Ï with exact direct 

products the inverse limit proj lim*: 2lx—»9I is exact if and only if for 
every connected component Y of X the inverse limit proj limr: 3Ir—»9I 
is exact. Hence one may assume without loss of generality that X 
itself is connected. 

Step 2. Let Z denote the group of integers, and let «3: X-+AB be 
the constant functor with values Z. Let 

E.omx:(ABx)°xnx-*% 

be the formal Hom-functor, defined for any abelian category §t with 
direct products (see e.g. [4, p. 145ff ]). In the same fashion let 

® :ABxX%x*->% 

be the tensor product, defined for any abelian category % with direct 
sums (loc. cit.). I t is easily seen that 

proj lim = HomxCS, ?) : 2tx -» 3Ï, 
x 

respectively 

injlim = 3 ® ?:2tx°-->2t 
x° x« 

where X° is the dual category of X. 
Using these notions we prove the 

PROPOSITION. Let Xbea small category. Then the following properties 
are equivalent. 

(1) proj lim*: ABX~->AB is exact. 
(2) For any abelian category §1 with exact direct products the functor 

proj limx: §lx—>2Ï is exact. 
(3) The object S ÇzABx is projective. 
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Moreover, if (l)-(3) are satisfied then for any abelian category 51 
with exact direct sums the direct limit 

injlim:2F°->2t 

is exact. 
The basic observation for this proof is that 3 *s projective if and 

only if it is X-representable in the sense of Eilenberg-Mac Lane [2], 
i.e., if and only if the canonical epimorphism 

<t>:]JZX(x, ?)->$, 

idx~~+ 1 £ £x = Z 

splits. Here ZX(x, y) is the free abelian group with basis X(x, y). 
The preceding proposition can be generalized to the 

PROPOSITION. For a small category X and a nonnegative integer n the 
following assertions are equivalent: 

(1) The (n + l)st right derived functor (proj lim^)»+i of proj limx: 
ABX-*AB is zero. 

(2) The (n + 1) si right derived functor (proj limx)»+i of proj limx: %x 

—»2l is zero for any abelian category % with exact direct products. 
(3) The projective dimension of Z is smaller than or equal to n. 

Step 3. The most important step in proving Theorem I is the follow­
ing proposition which is a special case of the implication (1)Z^(3) of 
Theorem I. 

PROPOSITION. Let X be a small, connected category. Assume that 
proj limx: ABX—>AB is exact, and that X is filtered from below, i.e., 
satisfies (F2)°. Then there are an object x&X and an endomorphism 
eÇ.X(x, x) satisfying the conditions (i) and (ii) of (3), Theorem I. 

The proof of this proposition starts with the fact that the canonical 
isomorphism 

*:HZX(*,?)->3 
xGX 

splits. 
Step 4. Under the hypotheses (a), respectively (b), on X the impli­

cation (1)Z£(3) of Theorem I (assume X connected without loss of 
generality) is proven in the following way: assume that proj limx: ABX 

-+AB is exact. From the proposition of the second step we conclude 
that inj limx°: ABX°—>AB is exact. Moreover X° satisfies the dual 
conditions (a)0 respectively (b)° of (a) respectively (b). Under these 
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hypotheses it was shown in [3] respectively [5] that X° is filtered 
from above. Hence X is filtered from below. Using this fact and the 
proposition of the third step we obtain that X satisfies the condition 
(3) of Theorem I. 

Step 5. In order to prove Theorem I in general it is sufficient to 
prove the following 

CONJECTURE: Let X be a connected, small category and assume 
that inj lim*: ABX-*AB is exact. Then X is filtered from above. 

I conjecture this result because it is true if X is a monoid [3] or 
satisfies (F2') [5], and no counterexamples are known. 
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