TOPOLOGICAL EMBEDDINGS IN CODIMENSION ONE1

BY P. F. DUVALL, JR.2

Communicated by O. G. Harrold, Jr. April 10, 1968

- 1. Introduction. Suppose Q^{n+1} is a piecewise linear (n+1)-manifold and M^n is a closed topological n-manifold embedded in int Q^{n+1} . We seek conditions on the embedding of M which insure that M has arbitrarily small neighborhoods which look like regular neighborhoods of a piecewise linear (PL) submanifold of Q. In particular, we would like M to be contained in a compact (n+1)-dimensional PL submanifold N of Q such that
- (1) $M \subset \text{int } N$,
- (2) M is a strong deformation retract of N, and
- (3) N-M is PL homeomorphic to bd $N \times [0, 1)$.

We call any compact (connected) PL submanifold N of Q satisfying (1) a PL manifold neighborhood of M.

We say that Q-M is 1-lc at M if for each open set U containing M there is an open set V, $M \subset V \subset U$, such that each loop in V-M is null homotopic in U-M. The purpose of this note is to show that, if M is simply connected and $n \ge 5$, then M has PL manifold neighborhoods satisfying (2) and (3) above if and only if Q-M is 1-lc at M.

All homology and cohomology groups will be singular with Z coefficients. i_* (i^*) will denote an inclusion induced map between homology or homotopy (cohomology) groups. The symbol \approx means is isomorphic to or is PL homeomorphic to, depending on the context. I denotes the unit interval [0, 1].

2. Statement of results. Let Q^{n+1} be a connected PL (n+1)-manifold, M^n a closed, 1-connected topological n-manifold embedded in int Q. Our main result is

THEOREM 1. If $n \ge 5$, there is a closed PL n-manifold M^* such that M has arbitrarily small PL manifold neighborhoods which are PL homeomorphic to $M^* \times I$ and satisfy (2) and (3) above if and only if Q-M is 1-lc at M.

The proof is postponed until §3.

¹ The work in this paper overlaps the author's doctoral dissertation, which was written under the direction of Professor C. H. Edwards, Jr. at the University of Georgia.

² Partially supported by a National Science Foundation Graduate Fellowship.

Now if M is a PL submanifold of Q, M is locally flat, and thus Q-M is 1-lc at M. It follows that the boundary components of any regular neighborhood of M are simply connected, so Theorem 1 and the h-cobordism theorem [4] (or Lemma 1 below) easily imply

COROLLARY 1. If M^n , $n \ge 5$, is a closed, 1-connected PL submanifold in the interior of a PL (n+1)-manifold, regular neighborhoods of M are PL homeomorphic to the product of some closed PL n-manifold with I.

Corollary 1 generalizes a theorem of Husch, [3].

COROLLARY 2. If M^n is a closed, 1-connected, topological n-manifold, $n \ge 5$, which can be embedded in the interior of a PL manifold Q^{n+1} in such a way that Q-M is 1-lc at M, then M has the homotopy type of a closed PL n-manifold.

3. Proof of Theorem 1. We will need the following two lemmas.

LEMMA 1. If W^{n+1} is a compact PL (n+1)-manifold, $n \ge 5$, with exactly two boundary components A and B, both 1-connected, and W has the homotopy type of a closed, 1-connected n-manifold, then $W \approx A \times I$.

PROOF. By the h-cobordism theorem, it suffices to show that the inclusion $A \subset W$ is a homotopy equivalence, and for this it is sufficient, by a theorem of Whitehead [7], to show that $H_q(W, A) \approx 0$ for all q. Since W is 1-connected, $H^1(W, B) \approx 0$, so by Poincaré duality, $H_n(W, A) \approx 0$. Since $H_n(A) \approx H_n(W) \approx Z$, the exact homology sequence of (W, A) shows that $i_* \colon H_n(A) \to H_n(W)$ is an isomorphism, so it follows from [6] that for each q, $i_* \colon H_q(A) \to H_q(W)$ is onto and $i^* \colon H^q(W) \to H^q(A)$ is 1-1. The exact homology and cohomology sequences of (W, A) show that for each q,

$$H_{q+1}(W, A) \approx \ker \left\{ i_* : H_q(A) \to H_q(W) \right\},$$

and

$$H^{q+1}(W, A) \approx \operatorname{coker} \left\{ i^* : H^q(W) \to H^q(A) \right\}.$$

By Poincaré duality for kernels [1], [6], there is an isomorphism $\rho_q: H_{q+1}(W, A) \to H^{n+1-q}(W, A)$ for each q. Composing ρ_q with the Poincaré duality isomorphism for (W, A, B) gives an isomorphism $H_{q+1}(W, A) \approx H^{n+1-q}(W, A) \approx H_q(W, B)$ and a similar argument gives $H_{q+1}(W, B) \approx H_q(W, A)$.

Since $H_0(W, A) \approx H_0(W, B) \approx 0$, it follows that $H_q(W, A) \approx 0$ for each q, and the proof is complete.

LEMMA 2. If M^n , Q^{n+1} are as in Theorem 1 and Q-M is 1-lc at M, then M has arbitrarily small PL manifold neighborhoods W such that

- (a) W has exactly two boundary components, each 1-connected,
- (b) W is 1-connected, and
- (c) W-M has two components, each 1-connected.

PROOF. We may assume that Q is open and 1-connected, for if $\tilde{Q} \xrightarrow{P}$ int Q is the (PL) universal cover of int Q, the fact that M is 1-connected implies that p is a homeomorphism on each component of $p^{-1}(M)$. If \tilde{M} is a component of $p^{-1}(M)$, a standard compactness argument shows that p is a homeomorphism on some neighborhood of \tilde{M} , so we may replace Q and M by \tilde{Q} and \tilde{M} .

Now Alexander duality [5, Theorem 6.2.17] shows that $H_1(Q, Q-M) \approx Z$, and the reduced homology sequence of (Q, Q-M) shows that Q-M has exactly two components, say Q_1 and Q_2 . Furthermore, it is easy to see that if U is any connected open neighborhood of M, U-M has exactly two components, $Q_i \cap U$, i=1, 2.

Let U be any open neighborhood of M, and let V be a neighborhood of M such that $V \subset U$ and each loop in V-M is null homotopic in U-M. We may also assume that each loop in U-M is null homotopic in Q-M. Let W_1 be any PL manifold neighborhood of M in V, and suppose W_1 has more than one boundary component in Q_1 . If A and B are two of these components, we may join them with a polyhedral arc α which lies, except for its endpoints, in int $W_1 - M$. If T is a small regular neighborhood of α in $W_1 - M$, $Cl(W_1 - T)$ is a PL manifold neighborhood of M in V with one less boundary component in Q_1 . Continuing this process on both sides of M, we can find a PL manifold neighborhood W_2 of M in V which has exactly one boundary component in each of Q_1 and Q_2 . Since each loop in bd W_2 is null homotopic in U-M by our choice of V, and since $n \ge 5$, we may alter W_2 by "exchanging disks" [1] to get a PL manifold neighborhood W of M in U which satisfies (a). By two applications of the Van Kampen theorem, W is 1-connected, so (b) holds. W-M has two components, and if N_j is the component contained in Q_j , j=1, 2, our assumption on U implies that $i_*: \pi_1(N_j) \to \pi_1(Q_j)$ is trivial, so the Van Kampen theorem implies that N_i is 1-connected, and the proof is complete.

PROOF OF THEOREM 1. Necessity is obvious. For the converse, let W be one of the PL manifold neighborhoods guaranteed by Lemma 2, small enough that M is a retract of W. Let V be the double of W and think of V as $W_1 \cup W_2$ where the W_i are the two copies of W and $M \subset W_1$. Then V - M is an open PL manifold, and Lemma 2 shows that V - M has two simply connected ends. Alexander duality and the exact homology sequence of (V, V - M) show that the

homology of V-M is finitely generated, so by the Browder, Levine, and Livesay boundary theorem [2], V-M is PL homeomorphic to the interior of a compact PL manifold with two simply connected boundary components. This means that there is a compact, PL submanifold X^{n+1} of V-M such that X has two simply connected boundary components, $W_2 \subset \operatorname{int} X$, and $(V-M)-\operatorname{int} X \approx \operatorname{bd} X \times [0, 1)$. Let $N=V-\operatorname{int} X$. Then N clearly satisfies conditions (1) and (3) of the introduction. Since V is orientable, Alexander duality gives $H^q(N, M) \approx H_{n+1-q}(V-M, \operatorname{int} X) \approx 0$ for each q. By the Universal Coefficient Theorem, $H_q(N, M) \approx 0$ for each q. N is simply connected by the arguments of Lemma 2, so by the Whitehead theorem, $i: M \to N$ is a homotopy equivalence. Since N retracts onto M, it follows that M is a strong deformation retract of N, so N satisfies (3). N is a product by Lemma 1, so the proof is complete.

REFERENCES

- 1. W. Browder, Structures on $M \times R$, Proc. Cambridge Philos. Soc. 61 (1965), 337-345.
- 2. W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028.
- 3. L. S. Husch, On regular neighborhoods of spheres, Bull. Amer. Math. Soc. 72 (1966), 879-881.
 - 4. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.
 - 5. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- 6. C. T. C. Wall, An extension of results of Novikov and Browder, Amer. J. Math., 88 (1966), 20-32.
- 7. J. H. C. Whitehead, On the homotopy type of ANR's, Bull. Amer. Math. Soc., 54 (1948), 1133-1145.

University of Georgia