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1. Introduction. Suppose Qn+1 is a piecewise linear (n+1)-manifold 
and Mn is a closed topological w-manifold embedded in int Qn+1. 
We seek conditions on the embedding of M which insure that M has 
arbitrarily small neighborhoods which look like regular neighbor­
hoods of a piecewise linear (PL) submanifold of Q. In particular, we 
would like M to be contained in a compact (w+l)-dimensional PL 
submanifold N of Q such that 
(1) MCintN, 
(2) M is a strong deformation retract of N9 and 
(3) N—M is PL homeomorphic to bd NX [0, 1). 
We call any compact (connected) PL submanifold N of Q satisfying 
(1) a PL manifold neighborhood of M. 

We say that Q — M is 14c at M if for each open set U containing M 
there is an open set V, MQ VQ U, such that each loop in V— M is 
null homotopic in U—M. The purpose of this note is to show that, 
if M is simply connected and net5, then M has PL manifold neigh­
borhoods satisfying (2) and (3) above if and only if Q~-Mis 14c at M. 

All homology and cohomology groups will be singular with Z 
coefficients, i* (i*) will denote an inclusion induced map between 
homology or homotopy (cohomology) groups. The symbol « means 
is isomorphic to or is PL homeomorphic to, depending on the context. 
/ denotes the unit interval [0, l ] . 

2. Statement of results. Let Qn+1 be a connected PL (n+ ^-mani­
fold, Mn a closed, 1-connected topological w-manifold embedded in 
int Q. Our main result is 

THEOREM 1. If w è 5 , there is a closed PL n-nianifold M* such that 
M has arbitrarily small PL manifold neighborhoods which are PL 
homeomorphic to M*XI and satisfy (2) and (3) above if and only if 
Q-Mis 14c at M. 

The proof is postponed until §3. 

1 The work in this paper overlaps the author's doctoral dissertation, which was 
written under the direction of Professor C. H. Edwards, Jr. at the University of 
Georgia. 

2 Partially supported by a National Science Foundation Graduate Fellowship. 
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Now if M is a PL submanifold of Q, M is locally flat, and thus 
Q — M is 1-lc at M. I t follows that the boundary components of any 
regular neighborhood of M are simply connected, so Theorem 1 and 
the A-cobordism theorem [4] (or Lemma 1 below) easily imply 

COROLLARY 1. If Mn, n*z5, is a closed, l-connected PL submanifold 
in the interior of a PL (n + l)-manifold, regular neighborhoods of M are 
PL homeomorphic to the product of some closed PL n-manifold with I. 

Corollary 1 generalizes a theorem of Husch, [3]. 

COROLLARY 2. If Mn is a closed, l-connected, topological n-manifold, 
n^5, which can be embedded in the interior of a PL manifold Qn+1 in 
such a way that Q—M is 1-lc at M, then M has the homotopy type of a 
closed PL n-manifold. 

3. Proof of Theorem 1. We will need the following two lemmas. 

LEMMA 1. If Wn+1 is a compact PL (n + 1)-manifold, n^5, with ex­
actly two boundary components A and B, both l-connected, and W has 
the homotopy type of a closed, l-connected n-manifold, then W**A XL 

PROOF. By the Â-cobordism theorem, it suffices to show that the 
inclusion A C W is a homotopy equivalence, and for this it is suffi­
cient, by a theorem of Whitehead [7], to show that Hq(W, A)^0 
for all q. Since W is l-connected, Hl(W, .B)«0, so by Poincaré 
duality, Hn(W, A) « 0 . Since Hn(A) ^Hn(W)^Z, the exact homology 
sequence of (W, A) shows that i*: Hn(A)—>Hn(W) is an isomorphism, 
so it follows from [6] that for each q, i*\Hq(A)-±Hq(W) is onto and 
i*:Hq(W)—>H9(A) is 1-1. The exact homology and cohomology 
sequences of (W, A) show that for each q, 

Hq+1(Wy A) « ker {**: Hq(A) -> Hq(W)}, 

and 

H«+1(W, A) « coker {i*: H«{W) -> H«(A)}. 

By Poincaré duality for kernels [ l ] , [6], there is an isomorphism 
pq: Hq+1(W, A)-*Hn+1-q(W, A) for each q. Composing pq with the 
Poincaré duality isomorphism for (W, A, B) gives an isomorphism 
Hq+i(W, A) ~Hn+1~«(W, A) ~Hq(W, B) and a similar argument gives 
Hq+1(W,B)~Hq(W,A). 

Since H0(W, A) ~H0(W, B) « 0 , it follows that Hq(W, A) « 0 for 
each q, and the proof is complete. 

LEMMA 2. If Mn, Qn+1 are as in Theorem 1 and Q — M is 1-lc at M, 
then M has arbitrarily small PL manifold neighborhoods W such that 
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(a) W has exactly two boundary components, each 1-connected, 
(b) W is 1-connected, and 
(c) W—M has two components, each 1-connected. 

PROOF. We may assume that Q is open and 1-connected, for if 
^ A i n t Q is the (PL) universal cover of int Q, the fact that M is 
1-connected implies that p is a homeomorphism on each component 
of p~x(M). If M is a component of p~l(M), a standard compactness 
argument shows that p is a homeomorphism on some neighborhood of 
M, so we may replace Q and M by Q and M. 

Now Alexander duality [5, Theorem 6.2.17] shows that 
H\{Q, Q — M)^Z, and the reduced homology sequence of (Q, Q — M) 
shows that Q — M has exactly two components, say Q\ and Q%. Fur­
thermore, it is easy to see that if U is any connected open neighbor­
hood of M, U—M has exactly two components, QiC\U, i = l, 2. 

Let U be any open neighborhood of M, and let F be a neighborhood 
of M such that VQ U and each loop in V—M is null homotopic in 
U—M. We may also assume that each loop in U—M is null homo-
topic in Q — M. Let W\ be any PL manifold neighborhood of M in V, 
and suppose W\ has more than one boundary component in Q\. If A 
and B are two of these components, we may join them with a poly­
hedral arc a which lies, except for its endpoints, in int W\ — M. If T 
is a small regular neighborhood of a in W\ — M, Cl(Wi — T) is a PL 
manifold neighborhood of M in V with one less boundary component 
in Qi. Continuing this process on both sides of M, we can find a PL 
manifold neighborhood W2 of M in V which has exactly one boundary 
component in each of Q\ and Qi. Since each loop in bd W* is null 
homotopic in U—M by our choice of V, and since n^5t we may 
alter W2 by "exchanging disks" [l ] to get a PL manifold neighborhood 
W of M in U which satisfies (a). By two applications of the Van 
Kampen theorem, W is 1-connected, so (b) holds. W—M has two 
components, and if Nj is the component contained in Çy, j — 1, 2, our 
assumption on U implies that i*: TI(NJ)—*TTI(QJ) is trivial, so the Van 
Kampen theorem implies that Nj is 1-connected, and the proof is 
complete. 

PROOF OF THEOREM 1. Necessity is obvious. For the converse, 
let W be one of the PL manifold neighborhoods guaranteed by 
Lemma 2, small enough that I f is a retract of W. Let V be the double 
of W and think of V as W1UW2 where the Wi are the two copies of 
W and MQWi. Then V—M is an open PL manifold, and Lemma 2 
shows that V— M has two simply connected ends. Alexander duality 
and the exact homology sequence of (V, V—M) show that the 
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homology of V—M is finitely generated, so by the Browder, Levine, 
and Livesay boundary theorem [2], V—M is PL homeomorphic to 
the interior of a compact PL manifold with two simply connected 
boundary components. This means that there is a compact, PL sub-
manifold Xn+1 of V—M such that X has two simply connected 
boundary components, W% O n t X, and ( V— M) —int X « b d X 
X [0, 1). Let N= F - i n t X Then N clearly satisfies conditions (1) 
and (3) of the introduction. Since V is orientable, Alexander duality 
gives H«(N, M) ~Hn+i-.q(V-M, int-Y) « 0 for each q. By the Uni­
versal Coefficient Theorem, Hq(Nt AT)«0 for each q. N is simply 
connected by the arguments of Lemma 2, so by the Whitehead the­
orem, i: M-+N is a homotopy equivalence. Since N retracts onto M, 
it follows that M is a strong deformation retract of N, so N satisfies 
(3). N is a product by Lemma 1, so the proof is complete. 

REFERENCES 

1. W. Browder, Structures on MXR, Proc. Cambridge Philos. Soc. 61 (1965), 
337-345. 

2. W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open 
manifold, Amer. J. Math. 87 (1965), 1017-1028. 

3. L. S. Husch, On regular neighborhoods of spheres. Bull. Amer. Math. Soc. 72 
(1966), 879-881. 

4. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. 
5. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. 
6. C. T. C. Wall, An extension of results of Novikov and Browder, Amer. J. Math., 

88 (1966), 20-32. 
7. J. H. C. Whitehead, On the homotopy type of ANR's, Bull. Amer. Math. Soc, 

54 (1948), 1133-1145. 

UNIVERSITY OF GEORGIA 


