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Bishop and Phelps proved in [ l ] that every proper closed convex 
subset of a Banach space has "many" support points. (A support 
point of a convex set C in a real topological linear space £ is a point 
x of C for which there is a nonzero continuous linear functional ƒ on 
E with f(x) =supCGCƒ(£)•) At the end of their paper they asked 
whether "Banach space" can be replaced by "complete locally convex 
space" in the statement of this result. In [3], Klee settled this nega­
tively by exhibiting a proper closed convex set in R^o with no support 
points. The set in Klee's example is unbounded, and at the end of [3] 
the question was raised whether a bounded closed convex subset of 
a complete locally convex space must have support points. (Note that 
a bounded closed convex subset of R*o is weakly compact and hence 
has support points. Indeed, if {Bi}£ml is any sequence of reflexive 
Banach spaces, every bounded closed convex subset of the product 
space H<Li^i is weakly compact and therefore has support points.) 

We settle Klee's question negatively: 

THEOREM. Let {Bi}£.1 be any sequence of nonreflexive Banach spaces. 
Then in the product space H<°liJ3< there is a closed bounded convex set 
which has no support points. 

The construction of the example rests on the theorem of James [2], 
that on every nonreflexive Banach space B, there is a continuous 
linear functional which does not assume its supremum on the unit 
ball of B. The detailed proof and related results will appear elsewhere. 
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