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The purpose of this department is to provide early announcement of significant
new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers
giving complete proofs of results of exceptional interest are also solicited. Manu-
scripts more than eight typewritten double spaced pages long will not be considered
as acceptable. All papers to be communicated by a Council member should be sent
directly to M. H. Protter, Department of Mathematics, University of California,
Berkeley, California 94720.

ON THE FACTORIZATION OF A CLASS OF
DIFFERENCE OPERATORS!

BY JET WIMP AND JERRY FIELDS
Communicated by Wolfgang Wasow, June 19, 1968

The differential equation for the Meijer G-function (generalized
hypergeometric function) with respect to the argument z, [1], can be
written in an elegant factored form using the differential operator
2(d/dz). Recently, [2], [3], it has been found that particular Meijer
G-functions satisfy difference equations with respect to a parameter,
and it is the purpose of this paper to deduce analogous factored forms
for these difference equations.

Consider the function
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where Lisaninfiniteloop contour which separates the poles of I' (x -- 8s)
-T(1—c+s) [[:.. T (1 —a;+s) from those of T'(c—s) IB"-x T'(®;—s).
Here and in what follows, we tacitly assume that the complex quan-

1 This work was supported by the United States Atomic Energy Commission
under Contract No. AT(11-1)1619.
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tities a4, bj, ¢, %, ¥ and 2 are such that the contour L actually exists.
For more details about such integrals, see [1, p. 20].
We define two linear difference operators with respect to x,
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where @ is the shift operator €f(x) =f(x+41), and & is the identity
operator. Direct computation shows that

( ) ?I(”’ X, y)K(S, X, 3’) = K(S, %,y + 1)(” + S),
5
?I*(x) y)K(S, X, y) = K(S, X%,y + 1)'

Finally, we set
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In the ordinary product notation used above, the order of the factors
must be interpreted as follows:

Il P;= PPy--- P.
=1
Our principal result is the following

THEOREM. For the a;, bj, ¢, x, ¥y and 2 as previously restricted,
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ProoF. By applying & directly to the integrand of (1), and using
(5), together with
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one readily verifies that
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As K(s,x+6, y+u+p)=K(s+1,x, y+u+p+06—e),and utp+d—e
=9+4¢q, BG(x) is just equal to the sum of the residues of 2*+1Q(s)
« 113-1(1 —a;4s)K(s+1, x, y+v+¢) contained in the region between
L and L—1. By inspection, we see the only possible residue is at
s=c—1, and (9) reduces to (7).

REMARK 1. It should be noted that there is a certain arbitrariness
in the definition of B, which is attributable to the symmetry property

(10) 2[(1‘27 %y + I)QI(ﬂls X, y) = ?'[(”1’ %,y + 1)2{(1‘2; X, 3’)-

Clearly, B can be rewritten in the form

= > [4;+B&, By = 0,
(11) B = Zl4tanle, B
r=max{q, ¢+ ¢p+8p+5—¢f.

REMARK 2. In reference [3] it was shown that the extended Jacobi
functions
)
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and the extended Laguerre functions
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satisfy normalized difference equations involving a difference operator
of the form (11) with

(14) 7 = max[r + 2, ¢]
and
(15) 7 = max[r + 1, ¢,

respectively. Furthermore, it was shown that these functions satisfied
no other difference equation so normalized of orders < those given by
(14) and (15), respectively, provided certain conditions on p;, j, A
were satisfied.

But the G-function on the right in (12) is the integral (1) with

m = 0, k=p=r, q = t, ¢ =0, x=n-+2A,
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(16) y=1—=\ 8=1 e=—1,

while the right-hand side of (13) is, apart from a constant multiple,
(1) with

m =0, k=p=r, qg=_t, c=0, x=n-+1,

17
{an y =0, & =0 &= —1.

Furthermore, the formula for 7 in (11) gives (14) for the values
(16), and (15) for the values (17). In view of the aforementioned
uniqueness of the difference equations, it follows that (6) will yield
a factorization of those difference equations given in [3].
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