
ALGEBRAIC LIE ALGEBRAS1 

BY GEORGE B. SELIGMAN 

I t is my objective in this address to survey results analogous to the 
third theorem of Lie (and its converse) for linear algebraic groups and 
their Lie algebras. In particular, I wish to report some slight progress 
on the problem of deciding from its structure whether a given Lie 
^-algebra ("restricted Lie algebra") over an arbitrary field F of prime 
characteristic p is realizable as the Lie algebra of a linear algebraic 
group defined over F. I t is to be hoped that the criteria here presented 
for the commutative case will find extensions, at least to the solvable 
or nilpotent case. 

1. Matrix groups and their Lie algebras. In this section I assume 
the base field F to be algebraically closed. I believe that the gains in 
explicitness afforded by this assumption are sufficient to offset the 
demands of comprehensiveness, which are well satisfied in [8]. As a 
linear algebraic group over F, I take here the most primitive notion, 
namely that of a subgroup G of a full matrix group GL(n, F) such that 
G is the intersection with GL{n, F) of the family of zeros in Fn* of a 
set of polynomials. The group G is connected if G is irreducible as an 
algebraic subset of GL(n, F). Denoting by F[X] the polynomial ring 
in the n2 variables Xy corresponding to the matrix entries and by a 
the ideal in F[X] vanishing on G, the algebra A{G) of everywhere-
defined rational functions on G is generated over F by the restrictions 
to G of the Xij and the reciprocal of the determinant function [ l ] , 
[36], and thus may be identified with B/aB} where B = FfX^detCX") - 1], 
(X) denoting the indeterminate matrix (Xij). Thus G is an affine 
algebraic set over F, with affine algebra A (G), and the rings of rational 
functions defined at points (or at irreducible algebraic subsets) of G 
are localizations of A(G). 

A tangent vector a t a point of G (defined by analogy with [7]) is 
thus determined by its effect on A(G), and a right-invariant tangent 
vector field T on G is determined by the effect on A (G) of the tangent 
vector which T assigns at the identity. Now the tangent space at the 
identity / can be realized as follows: Let (a) be an arbitrary nby n 
matrix, and consider the unique F-derivation D(a) of F[X] sending 
Xij into ^2k<XikXkj, the (ifj) -entry in (a) (X). Suppose that (a) is such 
that D(a) maps the ideal a into itself. Then D(ce) induces a derivation, 
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also written D(a)l of A(G) into itself, commuting with right transla­
tions by elements of G; moreover, every tangent vector at 7 is ob­
tained by applying one such £>(«>, then evaluating the resulting func­
tion at J [8], [32]. By this means, one identifies the Lie algebra of all 
such matrices (a) (with [(ce), 03)] ~(a)(j3)--(l3)(<x)) and the Lie alge­
bra (under the Poisson bracket) of all right-invariant tangent vector 
fields on G. If the characteristic of J7 is a prime p, then the pth power 
(a)p is in this Lie algebra whenever (a) is, and the resulting derivation 
is the pth iterate of D(a). The Lie algebra of matrices so defined is the 
Lie algebra of G, denoted here by 8(G). 

In this setting, the question of algebraicity is: Given a Lie algebra 8 
of n by n matrices over F> when is 2— 2(G) for some algebraic subgroup 
G of GL(n, F)? For the case of characteristic zero, a complete answer 
to this question has been given by Chevalley [8] (see also [18]). One 
defines replicas of a matrix (a) as those matrices 08) whose "infinitesi­
mal tensor invariants" include those of (a) ; then 8 is algebraic if and 
only if for each (a)G8 all replicas of (a) are in 8, and in this case 
8 = 8(G) for a unique connected algebraic subgroup G of GL(n> F). 
More concretely, if (a) is taken in Jordan form, the replicas of (a) are 
all linear combinations of the matrices obtained as follows: (1) By re­
placing the diagonal of (a) by zeros—the result here is the "nilpotent 
part" of (a) ; (2) By considering the diagonal matrix diag {an, • • •, ann} 
having the same diagonal as (a)—the "semisimple part" of (a)—and 
forming all diagonal matrices diag{/3n, • • • , j8nw} such that if w< are 
rational integers with ^mnota = 0, one has X)m A* — 0. 

Since I want to emphasize the problem of recognition of a Lie 
algebra as algebraic in terms of structural characteristics, a few re­
marks seem in order as to some properties which assure that a Lie 
algebra 8 of matrices (over a field of characteristic zero) is algebraic. 
For instance, if 8 is the derived algebra of some Lie algebra, 8 is alge­
braic; in particular, if 8= [88] (thus whenever 8 is semisimple), 8 is 
algebraic. In this line, we also know that 8 is algebraic if and only if 
its (solvable) radical is algebraic. From the above remarks on replicas 
it is clear that any Lie algebra -ft consisting of nilpotent matrices is 
algebraic; in fact, 5rt = 8(G) where the elements of G may be realized 
uniquely as the products of d = dim. 9t matrix factors (in specified 
order) exp(Xtwt), Ui running over a basis for 91 and X* over the field F. 
Thus the underlying variety of G is an affine space. Other subalgebras 
8 of matrices which are algebraic include stabilizers of subspaces, 
centralizers of sets of matrices, derivation-algebras, and other ex­
amples to be found along with these in [8], which is the reference for 
all the above. 
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In case F is of prime characteristic p, one still has the notion of 
replica; when (a) is taken in Jordan form, the replicas of its nilpotent 
part N consist of all p-polynomials ^2(3i Np\ and form a vector space 
of dimension k where i\7>* = 0, JV*"Vo [13], [40]. The replicas of its 
semisimple part are just as in characteristic zero [6]. Moreover, both 
the semisimple and nilpotent parts of (a) are ^-polynomials in (a), 
and combinations of their replicas exhaust the replicas of (a) [6], 
[8], [14], [33]. Thus the replicas of (a) are just the ^-polynomials in 
(a)t and the condition that 8 contain with (a) all its replicas amounts 
to requiring that 8 be closed under the operation of taking pth powers. 

Now if 8 is a simple Lie algebra of matrices, and if 8 = 8(G) for a 
connected algebraic subgroup of GL(n, F), then it follows, from the 
fact that the Lie algebra of a normal subgroup is an ideal in 8, that 
G has no nontrivial connected normal algebraic subgroups, therefore 
is a member of a list which has been determined by Chevalley [ l l ] . 
The Lie algebras of the groups in this list may be separately deter­
mined, or one may use more unified methods, as in [20 ], for their 
determination. It turns out that the only simple Lie algebras among 
them are of the form 8z® F, where 8z is a Chevalley lattice [lO] in a 
simple Lie algebra 8c over the complex field, and not even all of these 
are simple [16], [30], [38]. On the other hand, there are many simple 
Lie algebras over F, not of this form, which may be realized as Lie 
algebras of matrices closed under pth powers. Simplest examples are 
the Lie algebra of p by p matrices of trace zero, modulo scalar ma­
trices (p>2) and the Lie algebra of derivations of the group ring over 
F of an elementary abelian p-group (of order greater than p if p = 2 
or 3). (For a list apparently complete to date, see [34, Chapter V].) 
Thus the replica criterion gives a necessary, but not sufficient, condi­
tion for algebraicity. 

Structural conditions sufficient for algebraicity of a Lie algebra are 
present under some circumstances, usually when the Lie algebra 8 is 
presented as a subalgebra of the Lie algebra Wfl of some (connected) 
algebraic subgroup G of GL(n, F). Some of the more interesting, and 
quite typical, of these conditions are the following: (Although this is 
often superfluous, the ground field is assumed algebraically closed 
and of characteristic 5^2, 3.) 

(A) If G is an algebraic torus (i.e., a connected algebraic group of 
diagonal matrices), then every ^-subalgebra of 8(G) is algebraic, and 
is the Lie algebra of a subtorus (not unique) of G[l4]. 

(B) If #£8(G) is semisimple, then the centralizer of x in 8(G) is 
algebraic, and is the Lie algebra of the centralizer of x in G [2]. 

(C) The maximal ideal in 8(G) consisting of nilpotent matrices is 
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algebraic, and is the Lie algebra of the unipotent radical (maximal 
normal subgroup of unipotent elements) of G [20 ]. 

(D) Each Cartan subalgebra of 8(G) is algebraic, since it is the 
centralizer of a semisimple regular element (see (B)), and the corre­
spondence between (connected) centralizers in G of regular semi-
simple elements of 8(G) and Cartan subalgebras of 8(G) is one-one 
[20]. (These subgroups need not be "Cartan subgroups" [9], [ll].) 

(E) Each maximal toral subalgebra (i.e., commutative subalgebra 
of semisimple elements) of 2(G) is algebraic, and is the Lie algebra of 
a maximal torus of G. If G is reductive (has trivial unipotent radical— 
see (C)), the resulting correspondence between maximal tori of G and 
maximal toral subalgebras of 8(G) is one-one [20 ]. 

(F) Each maximal solvable subalgebra containing a maximal toral 
subalgebra of 8(G) is algebraic, and is the Lie algebra of a maximal 
solvable subgroup of G [41 ]. The resulting correspondence between 
Borel subgroups (maximal solvable connected subgroups) of G and 
maximal solvable subalgebras of 8(G) containing a maximal toral 
subalgebra is one-one [20]. 

Most of the results cited above are also to be found in [17] (see 
especially Exposés XII-XIV). 

One striking case where one can assert algebraicity of a Lie p-
algebra 8 of matrices is that where 8 is generated by a single matrix 
(a), that is, where 8 = ((«)) consists of all ^-polynomials in (a)—or, 
what is the same, of all replicas of (a). For by decomposing (a) into 
semisimple and nilpotent parts we see by (A) above that the ^-algebra 
generated by the semisimple part is algebraic. Dieudonné has also 
shown, with the aid of his "hyperexponential" group laws, that the 
^-algebra generated by the nilpotent part is algebraic, and is the Lie 
algebra of a commutative unipotent group commuting elementwise 
with a torus whose Lie algebra is generated by the semisimple part. 
Thus 8 is the Lie algebra of a commutative algebraic group. The 
hyperexponential group involved is isomorphic to an additive Witt 
group, and has thereby an underlying variety which is an affine space 
[14], [IS]. The choice of GQGL(n, F) with 8 = 8(G) is by no means 
unique. Moreover, it is now clear that the condition that ((a)) be 
algebraic for every (a) in the ^-algebra 8 brings us no closer than be­
fore to the algebraicity of 8, whereas a corresponding condition in 
characteristic zero is sufficient. 

2. The problem for abstract Lie algebras. When one examines the 
theorems of Lie in their original form, one observes that the analogy 
which served as the basis for §1 is not the most accurate one. Namely, 
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the classical results produced a (local) Lie group whose Lie algebra 
has the same structural constants as a given Lie algebra—in other 
words, which is isomorphic to the given Lie algebra. Thus we should 
perhaps reformulate our question as follows: Given an abstract Lie 
algebra 8, when is there a linear algebraic group G such that 8 and 8(G) 
are isomorphic? 

As in §1, we begin with characteristic zero. The question is whether 
8 has a faithful representation to which the considerations of §1 
apply. It is not hard to see that there are still exceptions to algebraic-
ity; for if 8 is algebraic in our sense, then there is an adjoint group, 
which is an algebraic group of automorphisms of 8 having as Lie 
algebra the Lie algebra ad 8 of inner derivations of 8 [8]. However, 
it is not true in general that ad 8 is closed under taking replicas. For 
example, consider the solvable Lie algebra 8 with basis e%9 • • • , e$ and 
[eiez] = e9, [e2e9] = —eSf [eie4] =es+e4t \e2e4\ = — e4, [eie&] =e&, [e2e6] 
= —es — esy all other products being either determined by anticommu-
tativity or equal to zero. Then if 3>£8 is to be such that ad y is the 
semisimple part of ad eu we must have \yei\ =0, i = 1, 2 and [yej] =£/, 
j = 3, 4, 5; one verifies at once that 8 contains no such y, hence that 8 
is not algebraic in our extended sense. This Lie algebra 8 may be 
realized as all matrices of the form 

f a a y à ) 

0 a 0 € 

0 0 0 0 
I 0 0 0 0 J 

If we let SDÎ be the subalgebra for which a=j8, we obtain a nilpotent 
Lie algebra of matrices which evidently does not contain the semi-
simple part of the matrix with a=j3 = l , 7 = 5 = € = 0. Thus there is no 
algebraic subgroup G of GL(4, F) with UD? = 8(G). On the other hand, 
one knows by Harish-Chandra's proof of Ado's theorem (cf. [23, 
Chapter VI] ; also [19], for a somewhat stronger result) that SDÎ has a 
faithful representation by nilpotent matrices so that 9ft is algebraic 
in the sense of this section by a result cited in §1. More generally, any 
Lie algebra whose (solvable) radical is nilpotent is algebraic. 

Let us now turn to the case of prime characteristic p. Here it is 
clear that the only Lie algebras that have a chance to be algebraic 
are those in which a £-power operation can be introduced which 
agrees with the pth power for matrices in some faithful representa­
tion. Since an abstract setting for Lie algebras with a ^-power opera­
tion has been given by Jacobson ([2l], [23, Chapter V]), it seems 
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appropriate to formulate our problem in this setting, that of "re­
stricted Lie algebras," or "Lie ^-algebras." Thus the problem reads: 
Given a Lie p-algebra 8, when is there a linear algebraic group G such 
that 8 is isomorphic, as Lie p-algebra, to 2(G)? 

To get a hint of the richness of this problem, consider the case 
where 8 is of dimension one, with basis x. As ordinary Lie algebra, 8 is 
the Lie algebra of any one-dimensional group G; however, if we take 
into account the />-power, we have xp=\x for some XG77. With F 
algebraically closed, 8 is the Lie algebra of an additive group Ga resp. 
of a multiplicative group Gm according as X is or is not zero. If we 
consider general fields F, then 8 is the Lie ^-algebra of a linear alge­
braic group over F if and only if X=/x(p-1)/2 for some ixE:F. (These 
considerations will be developed in what follows.) 

3. Lie algebras of affine groups. It seems most efficient to present 
the notion of linear algebraic group over a general field F and of its 
Lie algebra in a context which is really that of affine schemes over F. 
For motivation, let us reconsider some notions of §1, where F is as­
sumed algebraically closed, G is an algebraic subgroup of GL(nt F) 
and A(G) is the F-algebra of rational functions defined everywhere 
on G. In this setting, one has a product group GXG, which may be 
regarded in a rather evident way as an algebraic subgroup of 
GL(2n, F) consisting of diagonal blocks from G, and one may identify 
A(GXG) with A(G)®FA(G) [s]. Corresponding to the map ((a), (£)) 
—»(o003) of GXG into G, we have a homomorphism of -F-algebras 
with unit A:A(G)->A(G)®A(G) defined by (/A)((a), 08)) =ƒ((«) 08)) 
for f&A(G), ((ce), OS)) GGXG. Associativity of G is reflected in co-
associativity of A: A(A(g)l)=A(l<g>A), as maps of A(G) into A(G) 
®A(G)®A(G). Likewise the mapping sending an element of G to its 
inverse yields an automorphism rj of A(G): (ƒ»?)((«))=ƒ((a)""1)» a n d 
corresponding to the identity ƒ of G we have a homomorphism e of 
^-algebras from A(G) onto FQA(G) sending ƒ onto ƒ€=ƒ(/). The 
group properties of G are faithfully reflected in the commutativity 
of various diagrams involving these maps, as displayed in [5] or [26]. 
Conversely, one can recover G (up to isomorphism) from A(G) by 
taking the affine algebraic set of all T^-homomorphisms of A (G) into 
F and introducing product, inverse and identity by means of A, i?, €, 
respectively. 

Consider therefore a commutative jF-algebra A with unit, finitely 
generated over the (now arbitrary) field F, together with homomor-
phisms of F-algebras A: A—>A ®FA; rj: A->A ; e: A-^FQA, making 
commutative the list of diagrams indicated above. Such an object will 
be called an affine group over F. 
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To define its Lie algebra, let us again consider the model of §1. 
There the elements of 8(G) correspond to derivations D of A(G) as 
F-algebra, commuting with right translations by elements of G, or to 
^-derivations of A = A(G) making the following diagram commuta­
tive: 

A 
A —» A ® A 

(*) D I i D ® 1 

A -» A ® A 

Exactly such derivations of A, now defined abstractly as in the 
preceding paragraph, constitute a Lie algebra 8(A) over F (with 
[DE] = DE—ED), closed under pth iterates if F has prime character­
istic p. We call 8(-4) the Lie algebra of the affine group A. Considering 
only Lie ^-algebras, the original question now becomes: Given a Lie 
p-algebra 8 over F, when is there an affine group A over F such that 8 and 
8(A) are isomorphic Lie p-algebras? 

In view of earlier remarks, it may seem at first rather surprising 
that the answer to this last question is: ALWAYS. The ideas for the 
construction of A given below seem to have originated independently 
with Manin [25] and Cartier [5]. Namely, let U be the Jacobson 
"w-algebra" ([23, Chapter V]) of 8, an associative algebra with unit 
over F of dimension pn, n~dim 8. Denote by A* the product in U; 
thus A*: U® j4I—>U is TMinear, as is e*, the isomorphism of F onto 
F1QU. There is also an antiautomorphism rj* of U of period two, 
sending elements of 8(CU) into their negatives; a homomorphism 
7T*: U—»U®U, sending each x& onto x®l + l®#; and a homomor­
phism /**: U-+F1CU, sending each x £ 8 to zero. Now let A =U*, the 
dual space of U over F, and denote the duals of the starred mappings 
above by removing stars. Then ju. and T define on A a structure of pn-
dimensional .F-algebra with unit, which is easily seen to be associative 
and commutative. The maps A, 77, e in turn give A the structure of 
affine group over F. 

Now let DG8G4), and let D*: U->U be the dual of D. From dual­
izing the diagram (*), we see that D* commutes with all right multi­
plications in U, hence is left multiplication by some w£U. Then dual­
izing the relation wD = (D ® 1 + 1 ® D)TT, which expresses the fact that 
D is a derivation, shows that uir* ~u®l + l®u (i.e., that u is a primi­
tive element of U). But the elements u of U satisfying this last condi­
tion are exactly those of 8 [23, Chapter V], [28]. Now it is an easy 
matter to verify the isomorphism of 8(A) with 8. 
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The reason for the disparity with earlier remarks lies in the general­
ity admitted for A ; namely, the kernel of e above constitutes a nil-
potent ideal of codimension one. From this it is clear that the only 
F-homomorphism of A into a field extension of F is the map e, analo­
gous to the identity of the group G when A =A(G). (In the language 
of schemes, the only "geometric point" over F of Spec A is €.) To re­
turn to the geometric case, we require that A be (the affine ring of a 
variety) defined over F in the sense of Weil, that is, that A be an inte­
gral domain whose field of quotients is a regular extension of F, or 
that A ® pK be an integral domain for every field extension K of F. 
We impose this condition on A in further considerations. 

A few comments before passing on are in order. The affine group A 
of the construction above is a special case of an infinitesimal formal 
group, and a characterization of a class of infinitesimal formal groups 
corresponding exactly to the Lie ^-algebras (not necessarily finite-
dimensional) over F, in a manner extending that discussed here, has 
been given by Cartier [S] (see also [17, Exposés VII A, B]). Such 
groups actually arise in the context of linear algebraic groups, when 
one wishes to have something which plays the part of the kernel of a 
purely inseparable isogeny (cf. [37]). 

4. Lie algebras of commutative affine groups. The only cases where 
something like a systematic study of our question has been made are 
that of the simple Lie ^-algebras, where the classification of Chevalley 
[ l l ] in the algebraically closed case and that of Tits [39] in general 
give considerable information, and that of commutative Lie ^-alge­
bras. In the latter case, one is dealing simply with a vector space 8 
over F, of characteristic p>0, and with a given ^-semilinear mapping 
x—*xp of 8 into 8. It is this case which occupies the remainder of my 
talk, and indeed the formally more restricted question as to whether 
8 can occur as the Lie algebra of a commutative affine group defined 
over F. 

Let 8P denote the subspace of 8 generated by the image of 8 under 
the kth iterate of the mapping x—>xp. Then these subspaces evidently 
form a descending chain, so stabilize at some point in a subalgebra X 
with Xp «= X, and with every element of Sft = %/X being nilpotent with 
respect to the (induced) £-power operation. One says that X is toral 
and 9Î is nil, and has the exact sequence 0—•»£—>8—»9fl—>0. If the field 
F is perfect, 8P is actually the image of 8 under x—^x*, and Fitting's 
lemma applies to split the exact sequence, giving 8 = £©9fl [4, 
Exercise §1, #23]. Otherwise the sequence need not split. Although 
some Lie ^-algebras of nonsplit type do occur as Lie algebras of 
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algebraic groups (for instance, the multiplicative group of a purely 
inseparable extension of F has such a Lie algebra), the only definite 
piece of information we have is that X must be algebraic if 8 is to be 
the Lie algebra of a commutative affine group defined over F. It 
seems unlikely that this necessary condition is sufficient. The answer 
seems to be unknown (for p>2) even in the simplest case: Let 8 have 
basis x, y, with xp = #, yp = cex, where aÇzF is not a pth power. (In case 
p = 2, this is the Lie algebra of the multiplicative group of F(allp).) 
I now further limit consideration to the cases where the sequence 
does split, and indeed to toral and nil algebras. From the theory of 
algebraic groups, it suffices to ask when a toral algebra X over F is 
the Lie algebra of an algebraic torus defined over F and when a nil 
commutative Lie algebra over F is the Lie algebra of a commutative 
unipotent group defined over F. The former question will be dealt 
with in §5. Thus let 9t be nil, commutative, over the field F of prime 
characteristic p. 

If J7 is perfecty one has a well-developed theory of a single semilinear 
transformation which applies here to show that 9? is a direct sum of 
cyclic subalgebras (x) (i.e., linear combinations of x, xp, xp2

t • • • ; see 
[22]). Now the construction of Dieudonné cited in §1 shows that (x) 
is the Lie algebra of a Witt group over F, so that 5ft is the Lie algebra 
of a direct sum of Witt groups, and is therefore algebraic in the sense 
demanded here. When F is not perfect, the theory of a ^-semilinear 
transformation is inadequate; one can, however, obtain a quite ex­
plicit form for a nilpotent ^-semilinear transformation, wherein cer­
tain parameters reflect the failure of the space to be a direct sum of 
cyclic subspaces. Namely, one readily produces a direct sum Ui of 
cyclic subspaces, each of dimension k, containing $ftp 5^0, where 
5yK = 0. Then one enlarges Ui by a subspace U2 of 9tp supplemen­
tary to 9^ nUi, and constructs a subspace U2, containing U£, sup­
plementary to Ui, and such that U2+9tp is, modulo $lp , a direct 
sum of cyclic subspaces of dimension k — 1. The elements of U2 are 
certain linear combinations of our canonical basis for Ui ; they may 
be adjusted to be zero if F is perfect, but not in general. One repeats 
the process to express 9? as a direct sum of subspaces Ui©U2© • • • 
©U&, where 91**"' is contained in Ui© • • • ©Uy, Uy+5R*^i+1 is a 
direct sum of cyclic subspaces of dimension £—j + 1, modulo 5ft**"",+1, 
and where U ^ + 1 is expressible in terms of a previously canonically 
chosen basis for those U*, i <j. These last expressions introduce the 
indicated parameters, and 9t is a direct sum of cyclic algebras exactly 
when the parameters can be made zero, as is the case with perfect 
fields. 
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Having an explicit comparison of 5ft with a direct sum of cyclic 
algebras, we can now reexamine the definition of (a direct sum of) 
Witt groups (see [42] or [24], Chapter III) , with a view to introduc­
ing additional parameters which complicate the situation just enough 
to compensate for the parameters in our canonical form for 5ft. I t 
turns out that the desired complication can be achieved [35], retain­
ing the property that the underlying variety of the resulting com­
mutative unipotent group U is an affine space over Ff with 8(U) =5ft, 
and with \JP /Vp1+l a vector group having as Lie algebra 5ftpV$ftp/+1 f ° r 

each j . When all the parameters are zero, the construction yields a 
direct sum of Witt groups. The conclusion is the following theorem: 

THEOREM I. Let 5ft be a finite-dimensional commutative Lie p-algebra 
over F, with nilpotent p-power operation of exponent k. Then there is a 
commutative unipotent algebraic group U defined over F, of exponent pk, 
with underlying variety an affine space over F> and such that 2(U) is 
isomorphic to 5ft. 

As an illustration of the above, let 5ft have basis eu e%y e% with 
el^eu e%=aeu ^ i=0 , a$:Fp. The resulting group U may be regarded 
as affine 3-space over F, with operation (written additively) 

(£i> &, fc) + (171, V2, Vz) = (fi> f2, ?s), 

where 

f 2 = £2 + V2, ? 3 = £3 + 173, 

f 1 = h + vi — Lu — r~, (?2*?2 + «W3 ). 
»»i tKp-t)l 

The tangent vectors at the origin along the respective axes satisfy 
the same relations as do eu #2, e%> 

A tempting conjecture, which I have only been able to prove in 
some special cases, is that Theorem I remains valid when the two 
occurrences of the word "commutative" are deleted. 

5. Lie algebras of algebraic tori. By an algebraic torus over F we 
shall understand an affine algebraic group over F (i.e., an algebra A 
defined over F as in §3) such that upon suitable extension of the base 
field, say to K> there is an isomorphism of AK (respecting all opera­
tions, including €, rj, A) with K [Zn], the group algebra of a free (multi­
plicative) abelian group of rank n. The operations e, 77, A for K[Zn] 
are determined by: #e = l ; xrj =#"""1; #A = x®x, for all xÇzZn. This 
latter group will be called a split torus over K of dimension n, and K 
will be called a splitting field for A. I t is known (cf. [3, p. 61 ]) that 
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every algebraic torus A over F has a splitting field K such that K/F 
is a finite Galois extension, and that a subfield K of a given separable 
closure 5 of F is a splitting field for A if and only if every X-auto-
morphism cr of 5, when acting on .4 s in such a way as to be cr-semi-
linear and to fix A, also fixes all elements of ZnQAs. (The map A 
enables the elements of Zn to be distinguished as those xÇzAs such 
that xA=x®x—the characters of A ) By taking K to be the fixed 
field of the subgroup ® fixing Zn in the Galois group ® ( 5 / J P ) , we ob­
tain a unique minimal splitting field for A, with K/F a finite Galois 
extension. 

When A = F[Zn] is a split torus over Ff with #i, • • • ,xn free gen­
erators for Zn , the tangent space at the identity has as basis the 
partial derivatives, evaluated at xi= • • • =#„ = 1, with respect to 
the Xi, and each of these tangent vectors extends uniquely to an ele­
ment Di of 8(^4), the Lie algebra. One has XiD^dijX^ and the In­
form a basis for 2(A) over F, with D\ — Di for all i when the charac­
teristic is a prime p. Here 8(4) is isomorphic to a direct sum F@ • • • 
(&F oi n commutative Lie ^-algebras isomorphic to F with its own 
£-power operation. A Lie ^-algebra having this structure is clearly 
toral, and will be called the (w-dimensional) split toral algebra. 

Now every toral algebra X over a field F is split by a finite Galois 
extension K of F, and K is minimal when chosen as a (minimal) split­
ting field for the family of minimal ^-polynomials satisfied by a basis 
for X [33]. I t follows that every homomorphism <j>, of Lie ^-algebras 
over F, mapping X into an algebraic closure of F containing K ac­
tually maps X into K. Such homomorphisms form an additive group, 
the group of characters of X* By inspection of their extensions to XK, 
one sees that the characters of St are an elementary p-group of order 
pn, where w=dim X. 

Suppose now that X = 8 (-4), where A is an algebraic torus over F. 
Let K/F be a finite Galois extension with group ®, splitting A. Then 
XK = 8 (-4 K) is a split toral algebra over K, from which it follows that 
X is a toral algebra over F with K as a splitting field. Thus the char­
acters of X have their values in K, and so are acted on in an obvious 
way by the automorphisms in ®. From the action of ® on AK, one 
sees that for XÇZAK, cr£®, (#ff)A= (xA)(<r®<r), so that <r maps into 
itself the set of those XÇZAK with xA=x®x; this is just the character 
group of Ay identified with Zn in our presentation of AK. Thus © acts 
on this character group. 

Starting with a character x of A, we may form its differential ate, 
which turns out to be a character of X. With the action of ® as above, 
the mapping x—>dx is actually a ©-homomorphism of Zn onto the 
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character group of St. One can see all this without having to discuss 
differentials, as follows: Let xu • • • , xn be free generators for the 
character group of Af and let Du • • • , Dn be the associated basis for 
XK as defined above. Then the monomials x[l • • • xv£ (*\EZ) form a 
basis for AK<> identified with Zn\ moreover, the displayed element is a 
common eigenvector for all the Di, corresponding to the eigenvalue 
Vi of Di. Now one sees at once that the mapping sending #? • • • xv£ 
to that character of TK whose value at D» is Vi is a homomorphism of 
Zn onto the character group of XK (which is also that of St), with 
kernel consisting of those monomials with all vi divisible by p. From 
the manner of action of © on both groups it is seen that this mapping 
is a ©-homomorphism. 

Taking K to be the minimal splitting field for A, we see that a 
splitting field for X is obtained as a fixed field L of that subgroup § 
of © which acts trivially on the characters of %f and that L is the 
minimal splitting field for St. But § is just the kernel of the homo­
morphism of ®, now regarded as a group of automorphisms of Zn

f 

onto the group of automorphisms of Zn/pZn induced by ®. That is, 
§ is the subgroup of ®, a finite group of integral matrices, consisting 
of those elements of ® which are congruent to the identity modulo p. 
In these circumstances, it is well known that § must be trivial unless 
p = 2, in which case there is a basis for Zn relative to which $ consists 
of diagonal matrices with ± 1 on the diagonal [29]. That is, K is also 
a minimal splitting field for X unless p — 2. In particular, if A is a torus 
over F, of prime characteristic 5*2, then 2(A) is split if and only if A is 
split. 

The characteristic two is really exceptional in the above. For ex­
ample, the group of elements of norm one in an Artin-Schreier exten­
sion of jF(with p = 2) may be described in our formalism as follows: 
Let a £ F be such that X2+X+a is irreducible in F[X]; let A 
= F[x, y], subject to the relation x2+xy+ay2 = l. Let € send a; to 1, 
y to 0; let A send x to x®x+ay®y, y to x®y+y®x+y®y\ let 77 send 
x to x+y, y to y. Then one verifies easily that A defines an affine 
group over F. Let K = F(fi)f where fx2+fx+a — 01 and let X 
=x+wEAK. Then X-1 = x+y+ixy=-Xr)EAKf XA = X®X, and 
AK — KIX, X"1], X being transcendental over K. Thus K is a split­
ting field for the algebraic torus A over F, and the generating auto­
morphism <i of the Galois group ®(K/F) sends ju into JU+1; hence 
interchanges X and X"1. It follows that no character other than the 
trivial one is fixed by cr, so that K is a minimal splitting field for A. In 
particular, A is not a split torus. However, the derivation of F[X, Y] 
sending X to X, F to 1, i.e., the operator Xd/dX+d/dY, yields a 
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nonzero derivation D of A over F which is seen to be in 8(^4) and to 
satisfy D2 = D. Thus D is a basis for 8(4) , a split toral algebra even 
though the torus A is not split. 

The following theorem characterizes the Lie algebras of algebraic 
tori: 

THEOREM I I . Let 2 be a Lie p-algebra of dimension n over the field F 
of prime characteristic p. Then 2 is the Lie algebra of an algebraic torus 
aver F if and only if the following hold: 

(1) 8 is toral; 
(2) There is a finite Galois extension K/F which splits 8, an action 

of the Galois group ® — ®(K/F) on Zw, and a %-homomorphism of Zn 

onto the character group of 8. 

We have already seen the necessity of the conditions. Conversely, 
the assumed action of © on Zn combines with the action of © on K 
to give a representation of © by semilinear F-automorphisms of 
K[Zn]t commuting (in the appropriate senses) with the operators 
A, 77, e for the j£-split torus K[Zn]. I t follows that the fixed set A of 
this action constitutes an jF-form of K[Zn], i.e., an w-dimensional 
torus over F split by K (cf. [3l]). The character group of A is Zw, so 
one has a ©-isomorphism of Zn/pZn onto the character group of 8 (4) . 
Thus 8 and 2(A) are toral, split by K, and have ©-isomorphic char­
acter groups. Now 2K may be viewed dually as the set of homomor-
phisms of its character group into K, forming a if-vector space closed 
under ^-powers. From the ©-isomorphism of the character groups, 
one obtains a ©-isomorphism of 2K and 2(A)K; hence an isomorphism 
(over F) of 8 and 2(A). 

In particular, a one-dimensional Lie ^-algebra 8 over F with basis 
x, xp=\x7*0, satisfies (1) and will satisfy (2) only if 8 is split by a 
quadratic extension K of F (the action of © on Z can only be ±1). 
Then there is ixÇzK> (IJLX)P=IJLX, or )Ltp~1X = l, so that X is a (p — l ) th 
power in K. If X is a (p — l ) th power in F, then 8 is split and we are 
done. If not, but if \—vp~l, *>£i£, then p>2 and inspection of the 
minimum polynomial for v over F shows that i>2ÇzF, X£-F(3,~"1)/2. In 
particular, if F is finite X= ± 1 . This case \$F*-\ X = M ( P ~ 1 ) / 2 , M G ^ , 

is actually algebraic and may be realized as the Lie algebra of the 
multiplicative group of elements of norm one of F-\/fi), a group for 
which the algebra A may be given analogously to the example of an 
Artin-Schreier extension above. 

Combining our theorems, we see that a commutative Lie p-algebra 
over F which splits into a toral and a nil algebra (a condition which is 
always satisfied if F is perfect) is the Lie algebra of a commutative 
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affine algebraic group over F if and only if its toral part satisfies the 
condition (2) of Theorem II. 

One may also ask which commutative Lie ^-algebras over F can 
occur as Lie algebras of general commutative group-varieties over F, 
in particular of abelian varieties. Here one already sees in dimension 
one that the class of algebraic Lie algebras is larger than the above. 
The question awaits further study. 
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