
OPEN PROBLEMS ON UNIVALENT AND 
MULTIVALENT FUNCTIONS1 

BY A. W. GOODMAN 

1. Introduction. Let/(s) be regular in the unit circle 8: | z\ < 1 , and 
represented by the power series 

(1.1) w =f(z) - Jtbnz» = bo + b1z + b2z>+ . . . . 
n-=0 

The function ƒ maps S onto some subdomain S of a Riemann surface, 
and S is determined by the sequence {bn} of coefficients in (1.1). 

Many questions (both open and settled) can be classified as special 
cases of the two general questions: 

Given a geometric property of S what can be said about the se­
quence {bn}? Given some information about the sequence {bn}, what 
can be said about the domain S? 

One geometric property of S is specified by saying that ƒ (z) is uni­
valent in 8. By definition, ƒ(z) is univalent in 8 if 

(1.2) f(zi) = f(z2), zhz2 6 S =» zx = z2. 

Briefly, ƒ(z) is univalent in 8 if it assumes no value more than once for 
z in 8. When f{z) is univalent, the image of 8 forms a simple domain 
in the w-plane. The concept of univalence has a natural extension as 
described in 

DEFINITION 1. Let pbe a natural number. The function f {z) is said to 
be p-valent {or multivalent of order p) in 8 if the conditions 

(1.3) f(zt) = ƒ{z2) = • • • = /(Vfi) , *i>*2, • • • ,*p+i G 8 

imply that z^ — zufor some pair such that j^k, and if there is some w^ 
such that the equation f (z) =Wo has p roots {counted in accordance with 
their multiplicities) in 8. 

In brief, f{z) is ^-valent in 8 if it assumes no value more than p 
times in 8, but assumes some value p times in 8. We let V{p) denote 
the class of all functions that are regular and ^-valent in 8, and have 
/ ( 0 ) = 0 . 

Certain related classes are also of interest. We let 5Z{p) denote the 
subclass of V(fi) of those functions ƒ for which ƒ (8) is (in a generalized 

1 An expanded version of an address delivered to the Society in Tampa on Novem­
ber 11, 1966, by invitation of the Committee to Select Hour Speakers for the South­
eastern Sectional meeting; received by the editors July 11, 1968. 
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sense) convex. Let S3(£) be the subclass of V(p) for which ƒ (8) is star­
like with respect to some point, and let S3(0)(£) be the subclass for 
which ƒ (8) is starlike with respect to the origin. The class (R(p) con­
sists of those functions in V(p) for which all of the coefficients are real. 
The class 3(p) consists of those functions [25], [56] that are typically-
real of order p in 8. Finally we let (P denote the class of functions 

(1.4) g(z) = 1 + E CnZ* 
n=l 

that are regular in 8, and have positive real part in 8. 

2. The literature. One usually assigns the beginning of the theory 
of univalent functions to 1907 and the paper by Koebe [34]. The 
first respectable surveys of the literature on univalent and multi­
valent functions were given in 1933 by Montel [45] and in 1938 by 
Biernacki [6]. Subsequently, the volume of material increased in the 
usual exponential manner, and it was difficult for the beginner to 
determine the current status of any given problem. But recently this 
normal state of affairs has been temporarily reversed. Books by 
Schaeffer and Spencer [58], and Jenkins [33] cover in great detail 
special areas in the field. The texts by Hayman [28] and Goluzin 
[18] give a comprehensive survey, and Chapter 6 of Research prob­
lems in function theory [3l] contains enough open problems in the 
theory of univalent and multivalent functions to occupy our efforts 
for some time. Further guidance in the field is supplied by the survey 
articles of Bernardi [4], Krzyz [36] and Hayman [30]. 

Finally, mention must be made of the exhaustive bibliography 
prepared by Bernardi [5]. This list contains 1,694 references covering 
the publications of at least 570 authors who work in the theory of uni­
valent and multivalent functions. Compiling this list must have been 
a laborious and unrewarding task. Nevertheless, the excellent ar­
rangement, and clever indexing, make it a welcome and valuable aid 
to the serious mathematicians concerned with this field. 

Any report on open problems must duplicate some of the material 
contained in the surveys cited above, but we will try to hold the 
duplication to a minimum. 

3. Coefficient problems. If f(z)EV(l) then f(z) 5*0 in 8. Conse­
quently ftis^O in (1.1) and it is customary to normalize the function 
by replacing f(z) with 

00 

(3.1) g(z) m (f(z) - b,)/bx = z + £ anz». 
n-2 
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Clearly g(z) is regular and univalent in 8, if and only if f(z) is. We let 
1)1(1) be the subclass of V(l) of functions such that ƒ (0) = 1. 

I t has been widely conjectured that if g(z)Gl3i(l), then 

(3.2) I an I g n, n = 2,3, • • • . 

This conjecture has been proved for n = 2, 3, and 4, and in a large 
variety of special cases [4], [5], [18], [28], [33], [45], [58] but in 
general the inequality (3.2) still poses an open problem. If the bound 
on the right side were proved, it would be best possible (sharp) be­
cause the Koebe function 

z " 
(3.3) u(z) s ~ = z + 2L, nzn 

(1 - zy w«2 
is in 1)1(1). I t is easy to prove that u(z) maps 8 onto the domain 
formed by deleting the points z % — J from the complex plane. The 
conjecture that u(z) supplies the maximum for \an\ is a natural conse­
quence of the remark that u{Z) is a maximal simple domain (if any 
open set is adjoined to w(8) then the new domain is no longer simple). 

Now the question posed by (3.2) can be varied in many interesting 
ways. Let G be some fixed geometric property that determines a 
family of functions $i(G) in the sense that g(z)Çz$i(G) if and only if 
g(z) =z+ X 2̂° ön2nG"Üi(l) and g(8) has the geometric property G. 
These conditions automatically determine a sequence of numbers 
{<l>n(G)} such that if g(s)G3î(G), then 

(3.4) \an\ S <t>n(G), * = 2 , 3 , • • - . 

Here it is understood that <t>n(G) is the smallest number such that 
(3.4) holds for every g(z) in CFi(G). 

As examples of suitable geometric properties we have 
G\. g{z) is bounded in 8. 
G%. g(8) is a convex domain. 
G3. g(&) is starlike with respect to w = 0. 
G*. g(£) omits some specified set of points. 
G5. g (8) covers some fixed set of points. 
Ge. g(8) has a boundary curve of fixed length. 
The bounds in (3.4) are well known for G2 and G3. Indeed, Loewner 

[40] proved that <t>n(Gi)~\ and Nevanlinna [46] proved that 
<t>n(Gz)~n* Only partial results have been obtained for 4>n(Gk) for 
k = 1, 4, and S, and as far as I am aware the determination of 0n(Ge) 
has not been touched. The reader can easily add other geometric 
properties to the above list. However, it is not an easy task to find a 
G that is new, interesting, and for which some of the numbers </>n(G) 
can be computed explicitly. 
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We now turn our attention to V(p). The theory of p-vaient func­
tions is much more than just a generalization of the theory of uni­
valent functions. If T is a theorem about the set *U(1), the extension 
to V(p) for p*z2, may be completely trivial, or extremely difficult, 
or perhaps false. Merely to cite one difficulty the normalization 
g(z)—z+ • • • is not even possible for 2-valent functions. Further 
the subclass *Ui(2) of 2-valent functions of this form is not compact. 
Indeed, given Af, arbitrarily large, and w^2 ,a fixed positive integer, 
it is easy to show that there is a g in 1)1(2) of the form (3.1) for which 
I an\ >M. More generally [19] if we fix any p —1 of the first p coeffi­
cients in 

(3.5) ƒ(*) = hz + b2z* + • • • + Mp + £ bnz\ 

then it is still possible to find an ƒ in V (p) with the specified p — \ 
coefficients and with bn arbitrarily large for each n>p. Consequently, 
for a natural extension of the conjecture \an\ gw, we require that the 
first p coefficients in (3.5) be fixed (although there are other restric­
tions that are also of interest). After some labor we2 arrive at the 
following 

CONJECTURE. Let p^lbe a fixed integer and letf(z) be given by (3.5). 
Iff(*)€*Q(p)t then for each n>p 

. . * 2k(p + n) ! . . 
(3,6) 'bn] - S (p + k)i(p -*)K— p-iw-nW-

Briefly, the conjecture is that the wth coefficient is bounded by a 
certain linear combination of the first p coefficients. It has been 
proved [19] that if the bound on the right side of (3.6) is true then 
it is the sharp bound, because for each set {B\9 B^ • • • , Bp\ of non-
negative numbers, not all zero, there is an ƒ in V(p) for which | bk\ ~ Bk 
for k = l, 2, • • • , p, and for which we have (3.6) with the equality 
sign for each n>p. The simplest case of (3.6) occurs when p = 2 and 
w = 3. Then the conjecture (3.6) becomes 

(3.7) | f t , | ^ 5 I »! I + 41 A, I . 

Using variational methods M. Watson [61 ] has proved a number of 
interesting theorems on 2-valent functions that tend to strengthen 
the conjecture (3.7), but even this simple inequality still poses an 
open problem. 

2 This conjecture was first proposed in the author's thesis [19]. 
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If we look at certain subclasses of V(p) then we can go much further 
with (3.6). Indeed, it was proved in [25] thatif/(3)eS3(0)(£)n(R(p), 
then the sharp inequality (3.6) holds for each n>p^l and every set 
{\bi\, I&2I, • • • , \bp\ } of nonnegative numbers. In fact the same 
proof gives the same sharp result for the larger class of functions 
3(£). Later Gel'fer [14] obtained the same result with some moderate 
extensions. 

This line of investigation was continued by M. S. Robertson [55] 
who proved the following remarkable result. 

THEOREM 1. Let 

(3.8) ƒ(*) = £ anz» 
—00 

be regular in p ̂  | z\ < 1, and let p be a fixed positive integer. If on each 
circle \z\ =r, pfgr<1, the imaginary part off(z) changes sign 2p times, 
then for each n>p 

. . (n + p)\ . . 
(3.9) an - <u â — — — oo - âo\ 

1 ' n(pï)2(n- p- 1)1 ' 
A n(n + p) ! | ak - dU 1 

*-i (**2 - k*)(p + k)\{p - k)\{n - f - 1)! 

awd tóestf bounds are sharp in all of the variables. 
From this theorem, Robertson deduces the inequality (3,6) for 

another class ê(p) of ^-valent functions which neither contains 3{p) 
nor is contained in 3(p). The class 0(p) is the natural extension to 
p> 1 of the class of univalent functions that are convex in the direc­
tion of the imaginary axis. It is worth noting that the bound (3.6) is 
thus established for a large class of ^-valent functions in which the 
coefficients bn may be complex. These results for the classes 3(£) and 
${p) represent the present outer limits of our knowledge about the 
conjecture that (3.6) holds for all ƒ in V(p). 

If we assume in addition that ƒ (z) has p zeros at the origin, then 
f(z) can be put in the form 

(3.10) ƒ(«) = ** + bP+1z»+l + bp+2z
p+2 + • • • . 

For this special subclass of V(p), Hayman3 [26] has proved that 
8 After this paper was completed Professor Hayman informed me that D.C. 

Spencer obtained the same result: On mean one-valent functions% Ann. of Math. (2) 42 
(1941), 614-633. This inequality was also proved by G. M. Goluzin, On p-valent func­
tions, Mat. Sb. 8(50) (1940), 277-284. (Russian) 
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| & P + I | = 2 £ and Jenkins [33] has proved that \bp+t\ Sp(2p + l). 
Both of these results are consistent with (3.6), but beyond these no 
other sharp results are known. Asymptotic results and various esti­
mates for the coefficients are covered by Hayman in [27], [28] and 
the reader is referred to these sources for further details. 

Variational methods have been applied to the coefficient problem 
for multivalent functions, first by Schiffer [59] and later by Gel* fer 
[15], [16], [17], but as far as I am aware, the results are only qualita­
tive, and somewhat disappointing. 

4. The influence of zeros on the coefficients, Biernacki [6, p. 28] 
was the first to point out in print that the number of zeros oif(z) has 
an influence on the magnitude of the coefficients, and indeed he 
proved that for each p^l there is a constant C(p) such that if 
f(z)ÇzV(fi) and has 5 zeros in 8, then for n>s 

(4.1) \bn\£ C(p) max{ | h\ , | ft,| , • • • , | b.\ W*~\ 

No suggestion for the sharp upper bound in (4.1) was made until 1951 
when the author [2l] proposed the following. Let 

(4.2) ƒ(«) = # + 2 bnz% q â 1 

be in V(p), and suppose that in addition to the qth order zero of ƒ (z) 
at the origin, f(z) has t zeros ft, ft, • • • , |8| in 0 < | s | <1 , where 
q+t*=s^>p. Define Bn by 

(4.3) 

F(n)m (—^—) r - n f l + T - T ) ( 1 + A *) 
( l - 0 ) ' A l - z / ( l - z ) 2 ' | i A |ft | / ' ' 

00 

= 2«+ S BnZ\ 

Then the conjecture is that for each n>q 

(4.4) I ft, I SBn. 

The inequality (4.4) has been proved if f(z)Ç:3(p), but although the 
conjecture was repeated in [22], there has been little advance beyond 
this. It should be pointed out that the two conjectures embodied in 
(3.6) and (4.4) both specialize to |ftn| un, when p = l (f(z) is uni­
valent). Consequently, we have natural generalizations in two dis­
tinctly different directions for the coefficient problem for univalent 
functions. 
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Both of these conjectures suggest allied conjectures concerning 
bounds for | / (*) | , |/ '(*)| etc., but in the interest of brevity we will 
omit these items. 

5. Starlike functions. If in (4.3) q+t = p, then (4.3) can be put in 
the form 

ZQ P-Q / Z \ 

™-ö^ 5 n( . + T ï r )a + iAU 

n-a+1 

In the special case the conjecture 

(5.2) \bn\^Bn\ n>q, 

is a little more tractable. It has been proved [20, p. 214] that if f(z) 
is given by (4.2), has t = p — q zeros j8i, /32, • • • , j3* in 0< \z\ <1 , and 
is in S3(0)(£), then (5.2) holds for each n>q. This same result was ob­
tained later in a somewhat simpler way by Bender [3] and has been 
extended and generalized in a variety of ways [S]. The class S3(0)(£) 
should be approached cautiously. Hummel [32] distinguishes six 
different ways of defining a starlike ^-valent function. Although some 
of these definitions are then shown to be equivalent, Hummel proves 
that for p>l these definitions determine three different classes of 
functions, each worthy of the title starlike. Even for p = l, these 
definitions lead to two different classes of starlike functions. 

Is the bound (5.2) sharp? It turns out that with four of the defini­
tions for a starlike multivalent function, (5.2) is sharp, but as pointed 
out by Sakaguchi and Watanabe [57, p. 6] (5.2) gives only an upper 
bound for the remaining two classes of starlike multivalent functions, 
and the sharp upper bound in each of these cases is still unknown 
despite an erroneous claim to the contrary [20, p. 214]. 

B. N. Rahmanov [51 ] replaces the radial line segments by arcs of 
other curves, and obtains six different generalizations of the concept 
of a plane starlike domain to plane domains of a more complicated 
type. For each of these generalizations, Rahmanov finds a condition 
on the mapping function that corresponds to the classical one that 
R [*ƒ'(*)/ƒ(*) ] > 0 for ƒ (0) in S3«» (1). 

Each convex function h(z) is paired with some starlike function ƒ (z) 
by the Alexander relation: f(z) = zhf(s). Consequently, definitions, 
theorems, and conjectures for starlike functions generate correspond­
ing definitions, theorems, and conjectures for convex functions, and 
hence we may omit these later items. 
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6. Stieltjes integral representation. I t is well known that g(z) 
= 1 + ]Cr CnZnÇz(?, if and only if there is a pit) that is nondecreasing 
in [0, 27r] such that 

/

•2,r 1 + e-uz r2T 

o 1 — e"~**2 J o 
From (6.1) it is easy to show that \cn\ g 2 and to deduce a variety of 
other properties of g(z). The representation (6.1) for g(z) is a rich 
source for theorems. The technique involves finding or creating a class 
of functions 9C tha t is related in some nice way to the class (P. Then 
results about (P, obtained from (6.1), imply interesting results about 
9C. This method has been widely exploited [5], in particular when 
9C = S3(o)(i), 3C(1), and 3(1). 

From a theoretical point of view, the representation (6.1) contains 
implicitly all tha t we may wish to know about the class (P, but from 
a practical point of view it is not always a trivial matter to obtain the 
information we wish. For example, let <P' be the class of functions 
f(z)=z+ • • • for which ƒ' (z) G (P. The Wolff-Noshiro-Warschawski 
Theorem implies that if jf(s)£(P', then f(z) is univalent in 8. One 
might conjecture (as did Zmorovië [63]) that if /Os)E<P'» then / ( s ) 
GS3(0)(1)- Garperin [13, p. Si] asserted that there is an/(s)G(P' that 
is not in S3(0)(l), and Zmorovië [64, p. 178] and later Krzyz [35] gave 
explicit examples. 

These negative results leave open the problem of finding R8, the 
radius of starlikeness for the class (P'. By definition i?«, for a class of 
functions £F, is the largest R with the property that every ƒ(z) in ^ is 
starlike with respect to the origin for \z\ <R. Similarly Rc, the radius 
of convexity for a class $, is the largest R such that every ƒ (z) in ff is 
convex in | z | <R. Although Ra is unknown for the class <P', Mac-
Gregor [42] has proved that .R0 = 2 1 ' 2 - - l for (P'. 

7. Critical points. A critical point oif(z) is a point at which f(z) is 
zero. The presence of a single critical point is sufficient to destroy the 
univalence of ƒ (z). 

In contrast, a function may have infinitely many critical points in 
8 and still be 2-valent in 8 (see [23]). However, these critical points 
cannot crowd about the origin too closely but are governed by 

THEOREM 2. For each positive integer p and f or each integer k^p 
there is a positive number R*(p> k) with the following properties: 

A. Let f(z) be regular in 8 and have critical points Ci, C2, • • • , Cu 
in 8, where multiple critical points are listed in accordance with their 
multiplicity. If 
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(7.1) | o | £B*(p,k), i - 1 , 2 , . . . , * 

and if for at least one index j the strict inequality holds, then f(z) has 
valence greater than p in 8. 

B. The number R*(p, k) is the largest number with the property A. 

The conjecture advanced in [22] is that 

(7.2) g*(p, k) = R(p, k)=[2p-l-~ 2(p* - pyt*]uk 

and is based partly upon the fact that the function 

(7.3) F(z) = <1 - **)<*-»/*/(l + *)«*'* 

is ^-valent in 8 and has precisely k simple critical points, each with 
modulus R(p, k). Aside from the results obtained in [22], nothing 
else seems to be known about R*(p, k). 

8. A special class of meromorphic functions. Let S be a set of points 
and let ^(S) be the family of functions of the form 

(8.D ƒ(,).£ _ii_ 
ft-i z •— ajc 

where Ak>0 and ak&> & = 1, 2, • • • , n. Cakilov [8], [9] first raised 
the question of finding the domain of univalence for the class ^(S), 
and answered it in two interesting cases: (a) If S is the interval 
— 1 =£*SS li then each ƒ in $(S) is univalent in \z\ > 1, and this domain 
is maximal^ (b) If S is the disk \z\ ^ 1, then each ƒ in SF(S) is univalent 
in \z\ >V2% and this domain is maximal. These results of Cakilov 
have been extended in various ways [l] , [2], [ l l ] , [60]. 

R. Distler [10] found the precise domain of univalence for the 
family SF(S), for each arbitrary point set S. Let 6 be the closed convex 
cover of S and let 3D be the director set of e. By this we mean the set 
of points P such that 6 subtends an angle of 7r/2 at P . The set 3) 
may be empty, but if S is a bounded set with at least two points, then 
3D will be a simple closed curve. Distler's theorem then states that if 

ƒ££(§) then ƒ is univalent in the domain outside of the director curve 
3D, and this domain is maximal. Since the director set of the line seg­
ment — 1 ^z^ 1 is the circle \z\ = 1 , and the director set of the circle 
\z\ =1 is the circle \z\ =21/2, Distler's theorem contains the two 
Cakalov theorems as special cases. Distler's proof is very simple, 
and can be generalized to include the case in which the coefficients 
Ak are complex, but are restricted to lie in some sector. 

One naturally asks for the domain of ^-valence for the family 
^(S), and as far as I am aware, this problem is open for p^2. Also 
untouched are questions on the starlikeness or convexity of the image 
of | z | =R under functions in the family ^(S). 
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9. Sums and products. Let £F be some class of functions such as 
V(l), S3 (0)(l), 3C(1), etc., regular in S and let $i be the subclass of 
functions with the representation 

(9.1) ƒ(*) = z + £ anz\ 

We let d be the class of all functions 4> such that 

(9.2) <j>(z) 3 «ƒ(«) + # («) , a , ^ 0 , a + fi = 1, 

where ƒ and g are in CFi. Given the class SFi, what can we say about the 
class (5t? Perhaps the most natural question concerns the valence of 
<f> when ^i = 1)1(1). For some time I thought that the valence of <j> must 
be 1 or 2, and it was only after giving up this erroneous opinion, that 
I proved [24] that for a suitable choice of ƒ and g in eüi(l), the func­
tion <£ = ( /+g) /2 has infinite valence in 8. The very same selection 
also gives a function 

(9.3) G(z) m (ftogW 

that has infinite valence in 8. Thus there is an infinite sequence of 
constants R(p)<l, p~l, 2, • • • , such that if ƒ and gG*üi(l) and 
<t>G Œ, then <j> has valence q Sp in \z\ <R(p), where R(p) is the largest 
such number with this property. R(p) is called the radius of ^-valence 
for the class 6,. A similar sequence of constants exists for the class g 
defined by (9.3). Except for i?(l) , the values of R(p) in these two se­
quences are at present unknown. 

Other selections for the set Si, or other choices for the property of 
<t> or G, generate further interesting problems, most of which are open. 
A particular case is the problem suggested by Hayman [31, p. 38], 
namely, if ƒ and g are in OCi(l) is it true that cj>(z) is in S3(0)(l)? In 
pursuing this problem MacGregor [44] found that 4>{z) need not be 
univalent, and he determined the radius of univalence in three in­
teresting cases: 

(A) If $1 = 1)1(1), then i?(l)=sin(7r/8) = (2-2 1 / 2 ) 1 / 2 /2 . 
(B) If 3i=3Ci(l), then R(l)=2li*/2. 
(C) If 5i = S3 (0)(l), then R(l) is the largest value of r, such that 

i ? ( ( l + z ) / ( l - s ) 3 ) = 0 for \z\ ST. 
Further J. S. Ratt i [53] has proved that if $1 = ^1(1), then Rs 

= 21/2/2 for the class a. However, R8 for a is unknown if £Fi = T)i(l) 
or if SFi — s g ^ l ) . Further Rc is unknown4 for the set a, for each of 
the three selections for SFi. 

4 After this paper was completed, I learned that G. LaBelle and Q. I. Rahman 
have proven that if £Fi=3Ci (1), then Rc is not less than the smallest positive root of 
l -3r+2r 2 -2r 8 = 0. 
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I t seems to me that if 3i = 3Ci(l), then 0(2), defined by (9.2), cannot 
have valence 3, so that for this family R(2) = i£(3) = • • • = 1. More 
generally if <x&>0, and/jfc(:s)E3Ci(l), k = l9 2, • • • , n, then I conjec­
ture that the function 

(9.4) <t>(z) s arfib) + arf2(z) + • • • + anfn(z) 

has valence p^n. If this is true, then the result is sharp, because 
there are n functions fk in 3Ci(l) for which <t>(z), given by (9.4), is 
w-valent. 

Further results on the sums (9.2) and (9.4) were obtained by B. N. 
Rahmanov [49], [SO], [52], but limitations of space forbid a detailed 
report. 

We now consider the class 9 defined by (9.3) with ƒ and g in SFi. 
If 9ri=:0üi(l), then 9 contains functions that have valence infinity. 
If CFi = S3i0)(l) then, as almost everyone seems to know, G{z) E$3i0)(l). 
For the class 9» Ratt i [53] has proved: 

(A) if ffi^TJiOO, then 2Î. = tanh(ir/4), (B) if 3i«$3£0)(l), then 
jRc = 2 - 3 1 / 2 , and (C) if $i = 3€i(l), then R.-(2($)li*-$)U*. 

10. Other operations. Let (JC be the class of functions 

(10.1) H(z) = z + £ anbnz» 

where/(z), given by (9.1), is in (Fi, and 

(10.2) g{z) - z + £ bnz« 
w=2 

is also in SFi. Just as in §9, we may search for properties of the class 3C. 
M. S. Robertson [54] has proved that (A) if SFi=*3i(l), then H{z) 

is typically real in | z | <2—3 1 / 2 and this result is sharp, and (B) if ƒ 
and g are univalent and convex in the direction of the imaginary axis, 
then H(z) is also. L. Zalcman [62] has proved that there is an ƒ and 
g in 3i(l) such that H(z) has valence infinity. This raises a host of 
open questions: namely, find R(p), the radius of ^-valence for the 
class 3C when (Fi is t ) i ( l ) , or S3i0)(l), or 3i(l), or 3Ci(l). 

Similar questions can be raised about the related class 3C* of 
functions 

(10.3) H*(z) = z + £ - ^ z » 
n=2 n 
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when ƒ and g, given by (9.1) and (10.2) are in IFi. Here Robertson [54] 
has proved that if ffi = 3i(l), then 3C* = 3i(l). It was suggested by sev­
eral mathematicians that the set *Üi(l) of univalent functions might 
be closed under the operation (10.3), but this conjecture was killed 
simultaneously by B. Epstein and I. J* Schoenberg [12], C. Loewner 
and E. Netanyahu [41 ], and W. K. Hayman [29]. This naturally 
raises the question of determining the maximum valence for functions 
in the class 3C*, and the radius of ^-valence for the class 3C*. Further 
one can raise the same questions when ïïi^Viiq) for p>q}>2. 

M. Biernacki [7] attempted to prove that iîf(z)ÇzV(l)t then 

(io.4) g(z) - f * ^ - * 

is also in *ü(l). Unfortunately, his work contained an error, as was 
pointed out by J. Krzyz and Z. Lewandowski [37] who gave a coun­
terexample. The exact nature of the Biernacki error has been explored 
by V. A. Pohilevië [47], [48], who does not agree with the analysis 
given by Krzyz and Lewandowski. But the counterexample auto­
matically poses the problem of finding the radius of ^-valence for the 
class of functions defined by (10.4), not only when ƒ is in "ü(l), but 
more generally if ƒ is in V(q). 

R. Libera [39] proved that if/(s)GS3(0)(l), then 

(10.5) g t ó ^ - f / P 

is in S3<°>(1). Further if / ( s ) eœ( l ) , then g(z) given by (10.5) is also 
in 3C(1). He also proved that iîf(z) is in S3(0)(l) then 

(10.6) <r(z) s f f(t)dt 
J o 

isinS3(0)(2). 
In this same direction, MacGregor [43] showed that there is an 

f(z) in *ü(l) such that for each a in (0, 2x), the function 

(10.7) g ( S | a ) = _ faf(ze">)dd 
a J o 

is not univalent in 8. 

11. Miscellaneous items. It is an easy matter to prove that if 
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(11.1) E*l«*l ^ 1 

then / ( s ) , defined by (9.1) is univalent in 8. If the condition (11.1) is 
satisfied for f(z), then it is also satisfied for each of its partial sums 

(11.2) <rn(z) = s + I > * 2 * , n e 2. 

Hence, if ƒ(z) satisfies (11.1), then <rn(z) is univalent in 8 for each 
n*z2. J. S. Ratt i [53] has raised the following question: What is the 
class (PSi of all functions ƒ (0) = 2 + • • • such that each of the partial 
sums of f(z) is univalent in 8? Obviously (PSi contains all functions 
that satisfy the condition (11.1), but it is certainly a larger class, since 
fo(z)=z+z2/2+zz/l2 is in (PSX and does not satisfy (11.1). 

Although a polynomial is more elementary than an infinite power 
series, sharp results for univalent polynomials are harder to obtain 
than the corresponding results for univalent functions. The reader 
should observe that if \b\ < 1 , then the transformation 

«(«) -[ƒ((* + »)/d + **» - ƒ(*)]/ƒ'(*)(! ~ I H2) 
takes a function f(z) in T)i(l) into a function g(is) that is also in t) i( l) . 
But if ƒ(z) is a univalent polynomial, g(z) will not be another poly­
nomial. 

A function f(z) in eDi(l) is said to be bi-univalent if the inverse 
function is also univalent in 8. Almost nothing is known about bi-
univalent functions aside from the inequality j a%\ <1.51 obtained by 
M. Lewin [38]. 
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