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1. Introduction. The notion of an ordinal system restricted produc­
tive with respect to given sets was introduced in [9] and used to define 
constructive finite number classes. I t was shown that both the forms 
of the sets of notations for the finite number classes and the ordinals 
obtained are the same as of the sets 0, 0° , 0° , • • • , and the ordinals 
coi<w?<co? < • • • , respectively. In this article these results are ex­
tended to constructive transfinite number classes. We present an 
ordinal system {F,\ | ) which, in terms of our analogy with the clas­
sical ordinals, provides notations for the ordinals less than the first 
"constructively inaccessible" ordinal. Knowledge of the theory of con­
structive ordinals suggests that this should lead to a natural class of 
ordinals of some independent interest. This is born out by the 
characterization of the ordinals of (F, | |) given below. E\ is the type-2 
representing functional of the predicate \a.(V/3)(Bx)[a(J3(x)) = Q] 
introduced by Tugué [12] (see also Kleene [4]). Let cof1 be the small­
est ordinal which is not the order type of any well-ordering recursive 
in JSi. Our principal result is that the system (F,\ |) provides notations 
for exactly the ordinals less than o)El, and the sets of notations for the 
number classes form an 2?i-hierarchy. 

Kreider-Rogers [5] discussed three systems of notations, each of 
which regarded internally provides an analogue with the ordinals 
less than the first inaccessible, but it is not clear that any of these sys­
tems gives a natural class of ordinals. I t is clear from Theorem 2 below 
that (F, | |) provides notations for at least all of the ordinals of the 
systems in [5], but the question of equivalence remains open. 

Related results are obtained about initial ordinals and hierarchies 
independent of systems of notations. Proofs will appear elsewhere. 
Notation used is similar to that of [9]. 

The author is indebted to R. O. Gandy for his communication of 
a conjecture which led to Theorem 2. 

1 Research of the author was begun while he held a National Science Foundation 
Predoctoral fellowship. The research was continued at Dartmouth College in the 
summer of 1964 supported by National Science Foundation Grant G23805, and at the 
University of California, Berkeley, during the academic year 1964-65 while the author 
held a faculty fellowship from Rutgers, The State University. 
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2. The system (F, | | ) . The ordinal system (F, \ | ) is similar to 
the system C of [5] except the order-preserving requirement a t limit 
ordinals is omitted. Our presentation parallels the formulation of C 
given in Putnam [7]. Nv is the set of notations for the ordinal v. If for 
some p, x(~Nv, we let \x\ = (jJ>t;)[xÇzNs]. Cv = [){Ni:^<p}. i isaGödel 
number of the identity function, n is an index in C„ if 3W5*£C for 
some L F=l)Nv. 

Case 1. *> = 0. Then Nv={l}. 
Case 2. *> = £ + 1 , where iV$ is already defined. Then Ny = {2X: xÇzNç}. 
Case 3. v is a limit ordinal such that Ny is already defined for all 

y<v, and there exists an ordinal £<*> such that 3 a 5 * G ^ for some a 
and a partial recursive function ƒ such that C$£ô/ and f(C^)QCv and 
*> = lub{ |/(01 ' £ £ Q } - Then Nv is taken to be the set of all numbers 
Sa5n such that 3a5*£iVr$, where £ is any ordinal with the above prop­
erty, and C^b{n] and {n} ( Q ) Ç C , and p = lub{ | {n) {t)\ : / £ Q } . 

Case 4. p is a limit ordinal such that iV7 is already defined for all 
7 O , and Case 3 does not hold, but there is a number a £ C which is 
not an index in C„. Let £ < P be the smallest ordinal such that Nç con­
tains a nonindex in C„. Then 

# „ = {3aSn:aENsACvQô{n} A {**}(<?„) C C„ A v 

= lub{ | {**}(*) | : / G C , | | . 

xÇzNp only as required by Cases 1-4. 
I t is easy to verify that if V9^^ then NvC\N^ = 0. The smallest 

ordinal for which there is no notation in F is denoted by | F\. For 
xÇzF, F\x\ = C\zxbi\ is the set of notations for the | x | t h (cumulative) 
number class of (F, | |)( \x\ - f i s t if \x\ <œ). We also let F\F\ = F. For 
v^\F\, let F* = U{F{: £ 0 } . The smallest ordinal for which there 
is no notation in F* is denoted by \ F*\. 

I t is not difficult to show that the number classes (and F itself) are 
(uniformly) restricted productive with respect to smaller number 
classes. Then using the techniques of [ç], the recursion theorem, and 
a proof by transfinite induction, we obtain: 

THEOREM 1. For l£v£t<\F\, 

(1) Fv ^ 0F\ 

(2) | F , | = = J ? , 
(3) Ft g i f * ÛiF. 

In particular, FV+\Ç~0F* and | Fv+i\ =0/^. The proof of Theorem 1 
gives the stronger result, used in the applications, that the iso­
morphisms in (1) and the reducibilities in (3) may be found effec­
tively from a notation for v. 
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THEOREM 2. (1) A set A is recursive in Ei iff for some v< \ F\, A is 
recursive in Fvy 

(2) M=«fs 
(3) F^OE\ 
(4) F is a complete set of the f or m {x: (Ba)BlP(x, a ) } , where the 

predicate P is recursive in E\ and the subscript E\ means the range of the 
quantifier is restricted to number-theoretic functions recursive in Eit 

(5) F is not recursive in Ei. 

(1) says that the number classes of (F, | |) form an Ei-hierarchy. 
The problem of finding an Ei-hierarchy was raised by Shoenfield [lO]. 
Shoenfield [ l l ] has since announced a method for constructing a 
hierarchy for an arbitrary type-2 functional in which E (defined in 
Kleene [3]) is recursive. Observe that Theorem 2 is an analogue of 
familiar properties of sets of notations for the constructive ordinals. 
Specifically, Theorem 2 remains true if F and Ei are replaced through­
out by O and E respectively. 

I t is clear that (F, | | ) is a jD-system with arithmetic </> (defined in 
Putnam [8]). Hence from [8] it follows that FGAg. This implies by 
(5) the result (previously obtained by Shoenfield [lO] and Gandy 
[2]) that the functions recursive in Ei are a proper subclass of Ag.2 

3. Initial ordinals and hierarchies independent of systems of nota­
tions. The following definition of initial number is due to Gandy [2]. 

DEFINITION. (1) An ordinal v is called regular if for some set A, 
v=o)f. v>o) is initial if it is regular or is a limit of regular ordinals. 
Let coo = a>, and for *>>0 let co„ be the *>th initial ordinal greater than w. 

(2) For 1 gy<wf l let co* = | F?\ (o£_i if P<Ü)). CO* is called theyth 
(p + ls t if p<0)) initial ordinal of (F, \ | ). 

THEOREM 3. If v <cof\ then oft =co„. 

Thus the initial numbers coincide with the initial numbers of 
( F , | |) foriXcof. 

We do not know at present if there exist sets A of nonnegative 
integers and limit ordinals v such that co„=cdf. However, from the 
basis theorem for Aj sets (Addison [l]) it follows that if such sets A 
exist then there also exist such sets belonging to Aj. On the other hand 
we have: 

2 Since the well-ordering functional W (W(a) = 0 or 1, depending on whether or 
not a is a well-ordering) i« equivalent to Et, it also follows from (5) that there are 
D-systems whose sets of notations are not recursive in W. Thus, /^-systems are more 
powerful than was anticipated in [ó]. 
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THEOREM 4. A limit o)P of an increasing sequence of regular ordinals 
is not itself a regular ordinal for v <cof1. And if œ( is the limit of an in­
creasing sequence of regular ordinals, then A is not recursive in JSi. 

A hierarchy of hyperdegrees may be defined independently of sys­
tems of notations by the following procedure. Let hi be the hyperde-
gree of hyperarithmetic sets. If hv has been defined, let hv+\ be the 
hyper jump of hv. If v is a limit ordinal and hç has been defined for all 
£ O , let hy be the least upper bound of {h$: £ O } , provided the least 
upper bound exists. We do not know at what limit ordinal r this 
hierarchy terminates. 

THEOREM 5. For l^p<o)^f F?Ehv. 

Thus r^cof1. We conjecture that r=cof1 and that cuf1 is regular. 
REMARK. We note in connection with Theorems 4 and 5 that for 

any A : (1) cof1 <œf1 iff F is hyperarithmetic in A, and (2) if the hyper-
degree of A is an upper bound of {hç: ÇKco?1} then F^iCr*. Thus the 
hyperdegree of F is "almost" the lub of {h$: £ <cof*}. 

The hyperdegrees hç, %<ù)fl may be characterized in terms of IL\ 
singletons as follows. 

THEOREM 6. For every set A recursive in £i , 

Suzuki [13] showed that 

(Vil)Aj(aB)A}[il SiB A {B} E Till 

From Theorems 2 and 6 we have: 

COROLLARY 7. ( V 4 ) j * ( a 5 ) * J i 4 S i B A { i ï } e n î ] . 

4. Extensions of OF, | | ). (F, \ | ) can be extended by adding nota­
tions for higher order inaccessibles along the lines described in [5, p. 
368]. Specifically, let 6 i = (F, \ \ ), and for 1 <n<œ, let e n = (C„, | | „) 
be the extension of Ci obtained by adding notations for the points of 
nth order difficulty. For any type-2 functional F let d(F) be a type-2 
functional equivalent to the representing functional of the predicate 
[kxa.{x}(a, F) is defined]. For l<n<œt let En+i = d(En). Then 
Theorem 2 remains true if (F,\ |) is replaced by e„ and <£* is replaced 
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by En* This procedure can presumably be extended into the trans-
finite. The general situation is under investigation. 

Added in proof. Saul A. Kripke has informed the author that he 
has independently shown that r^cof1, and also that r is a A£ ordinal. 
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1 Each (B« is a D-system. Thus the first ordinal for which there is no notation in D-
systems is ^lim «f». In correspondence, R. O. Gandy states that in fact this ordinal 
equals lim wf». 


