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1. A reflexion space is a set M with a multiplication fx: MXM-+M, 
(x, y)l-*x-y, satisfying the following axioms: 

(Si) x-x = x, 

(52) x-(x-y) = y, 

(53) x>(yz) = (x-y)-(x-z). 

Let be S(x): yi—>x-y the left multiplication with x in M. This is an 
involutive map of M onto itself leaving x fixed, which may be inter­
preted as the reflexion in the point x. 

Let % be a finite dimensional Jordan algebra and / the set of in-
vertible elements of §K. In general for x, yÇï.1 their product xy is not 
in ƒ, so / does not inherit a multiplicative structure from 9Ï. How­
ever, x-y = 2x(xy'~1)—x2y~1 is invertible ( [ l ] ) , and the multiplication 
x • y makes I a reflexion space. Every group is a reflexion space with 
the new product x-y = xy~1x. Every set is a reflexion space with the 
trivial product x-y = y for all x and y. 

A reflexion space M where M is a connected paracompact C00-
manifold and /x: MXM—+M is differentiate is called a differentiable 
reflexion space. The following construction gives examples. Let G 
be a connected Lie group, a an involutive automorphism of G and H 
a subgroup of G lying between the group of all fixed points of a and 
its identity component. Then G/His a homogeneous symmetric space 
and G(G/H, H) is a principal fibre bundle with base space G/H and 
structure group H. Let H operate on a connected manifold F on the 
left and let be GXHF the bundle associated with G(G/H% H) with 
typical fibre F (cf [2]). We denote the equivalence class of (g, x) 
EGXF'mGXHFby g®x. In case F i s apo in t , wehave G X ^ ^ = G / i J . 

PROPOSITION 1. GXHF is a differentiable reflexion space with the 
multiplication 

(j®x)-(g®y) = (f(fa)-Y) ®y-

1 This work is a generalization of part of the author's doctoral dissertation at the 
University of Munich under Professor M. Koecher. 
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Our main result is that all differentiable reflexion spaces are of the 
type described above (Theorem 2). Proofs will be given in a forth­
coming article. 

2. A differentiable map $ : M—+N of differentiable reflexion spaces 
M, N is called a homomorphism, if <j>(x-y) =4>(x) -<l>(y). Isomorphisms 
and automorphisms are defined as usual. Let Aut M be the group 
of (differentiable) automorphisms of M and G the group generated by 
the maps S(x) o S (y), x, y (E M. We denote the image of a tangent 
vector X of M under the differential of the map xl-^p'X by p-X; 
similarly X-p is defined. A vector X^TP(M) is called vertical (hori­
zontal), if p-X = X (resp. p-X=-X). The set T+(M) of vertical 
vectors (resp. T~(M) of horizontal vectors) form subbundles of the 
tangent bundle T(M) and we have T(M) = T+(M)®T~(M). Let J 
be the projection on T~(M) and 

S(X, Y) = J[JX, Y] + J[X, JY] - [JX9 JY] - J[X, Y] 

the Nijenhuis torsion tensor of 7. 

PROPOSITION 2. T+(M) is an involutive subbundle of T(M). T~(M) 
is involutive if and only if S = 0. 

Let Fp be the maximal connected integral manifold of T+(M) 
through p, called the fibre through p. I t can be characterized as the 
connected component of p of the set of fixed points of S(p). The set 
Mo of all fibres becomes a reflexion space with the multiplication 
F . F = F 

3. Let M be a differentiable reflexion space, e a fixed point of M 
and F= Fe the fibre through e. For XETe(M) let L(X) be the vector 
field given by 

L(X)p = %X-(e-p), 

and g the Lie algebra generated by the vector fields L(X). Let G 
denote the group generated by the transformations S(x) o S (y), 
x, yEM, 

THEOREM 1. G has a unique structure of a connected Lie transforma-
Hon group of M, so that its Lie algebra is isomorphic with g. / / permutes 
the fibres transitively. The map a: g\-~^S(e) o g o S (e) is an involutive 
automorphism of G and the subgroup H of G which leaves F invariant 
lies between the group of fixed points of a and its identity component. 

We now state our main result. 
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THEOREM 2. M is isomorphic as a reflexion space with GXHF under 
the map g®x\—>g(x) (g£G, xÇzF). The set of fibres Mo is isomorphic 
with G/H under gH\—>Fg(e), and the diagram 

GXHF->M 

i I 
G/H >M0 

is commutative. Moreover, M0 depends f unctorially on M. 

4. We keep the notation of the preceding sections. A differentiate 
reflexion space M is called torsion free, if 5 = 0. The maximal con­
nected integral manifolds of T~(M) (Proposition 2) are called the 
leaves of M. 

PROPOSITION 3. S = 0 If and only if the identity component H° of H 
operates trivially on F. 

By a result of Koh [3] H/H° is finite. Let be T the finite group of 
diffeomorphisms of F induced by H/H°. A point of F is called regular 
if its isotropy subgroup in T consists of the identity alone, singular 
otherwise. For the notion of a regular leaf see [4], 

THEOREM 3. Let M be torsion free. The leaves are closed submanifolds 
and coincide with the orbits of G. A leaf is regular if and only if it inter­
sects F in a regular point. The restriction of the canonical projection 
M—*Mo to a leaf B is a finite covering map B—>Mo, which is regular with 
group T if B is regular. If M0 is simply connected, then M is isomorphic 
with MoXF, where F has the trivial multiplication (see §1). 

A vector field X on M is called a derivation, if 

Xp.q = Xp*q + p'Xq 

for p, q(EM. The set of derivations is a Lie algebra Der M. In general 
the automorphism group Aut M is too big to be a Lie group. However 
we have 

THEOREM 4. Let G be transitive on M. Then Aut M has a unique 
structure of a Lie transformation group of M so that its Lie algebra is 
isomorphic with Der M. 
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