HIGHER RANK CLASS GROUPS1

BY LUTHER CLABORN AND ROBERT FOSSUM

Communicated by P. T. Bateman, October 24, 1966

Let A be a noetherian ring which is locally Macaulay. For each integer $i \ge 0$, groups $C_i(A)$ and $W_i(A)$ are defined, each sequence of groups generalizing to higher dimensions the usual class group of an integrally closed noetherian domain. $C_i(A)$ is called the *i*th class group of A, and $W_i(A)$ is called the *i*th homological class group of A. The main purpose of this note is to show that both sequences of groups have properties analogous to the class group of a Noetherian integrally closed integral domain, and finally to establish a connection between them.

1. Throughout this section A is a commutative noetherian ring which is locally Macaulay. A set of elements x_1, \dots, x_s is an A-sequence of length s if $x_1A + \dots + x_sA \neq A$ and $x_1A + \dots + x_iA$: $x_{i+1} = x_1A + \dots + x_iA$ for $i = 0, 1, \dots, s-1$. Count the empty set as an A-sequence of length 0 and specify that it generate the zero ideal of A.

Note that if x_1, \dots, x_s is an A-sequence of length s, then $x_1A + \dots + x_sA$ is an unmixed ideal of A of height s.

For each $i \ge 0$, form the free abelian group on the generators $\langle \mathfrak{p} \rangle$ where \mathfrak{p} is a height i prime ideal of A. This group will be denoted by $D_i(A)$. For each A-sequence x_1, \dots, x_i , consider the element $\sum e(x_1, \dots, x_i | A_{\mathfrak{p}}) \langle \mathfrak{p} \rangle$ of D_i (here $e(y_1, \dots, y_i | M)$ denotes the multiplicity of $y_1A + \dots + y_iA$ on M). Let R_i designate the subgroup of D_i generated by all such elements. Set $C_i(A) = D_i(A)/R_i$ and call $C_i(A)$ the class group of rank i for A. Denote the image of $\langle \mathfrak{p} \rangle$ in $C_i(A)$ by $cl(\mathfrak{p})$. Set $C_i(A) = \bigoplus C_i(A)$.

EXAMPLES. $C_0(A)$ is always finitely generated. $C_0(A)$ is finite if and only if (0) is a primary ideal of $A \cdot C_0(A) = 0$ if and only if A is a domain.

If A is a Dedekind domain, then $C_1(A)$ is the ordinary ideal class group of A. More generally, if A is integrally closed, then $C_1(A)$ is the class group of A $[1, \S 1, no. 10]$.

We have not been able to locate the following lemma in the literature.

¹ This research was supported by the National Science Foundation Grant GP-5478.

LEMMA 1.1. Let S be a multiplicatively closed subset of A. If y_1, \dots, y_i is an A_s -sequence, then there is an A-sequence x_1, \dots, x_i such that $\sum y_i A_s = \sum x_i A_s$.

THEOREM 1.2. (Cf. [1, Proposition 17, §1, no. 10].) Let S be a multiplicatively closed subset of A. Then for each $i \ge 0$, there is an epimorphism $C_i(A) \rightarrow C_i(A_S)$ deduced from $\langle \mathfrak{p} \rangle \rightarrow 0$ if $\mathfrak{p} \cap S \ne \emptyset$ and $\langle \mathfrak{p} \rangle \rightarrow \langle \mathfrak{p} A_S \rangle$ if $\mathfrak{p} \cap S = \emptyset$. The kernel is generated by $\{ \operatorname{cl}(\mathfrak{p}) \}$ where $\operatorname{ht}(\mathfrak{p}) = i$ and $\mathfrak{p} \cap S \ne \emptyset$.

COROLLARY 1.3. (Cf. [4, Lemma 1.7].) If $\mathfrak{p} \cap S \neq \emptyset$ implies that $\mathfrak{cl}(\mathfrak{p}) = 0$, then the epimorphism of Theorem 1.2 is an isomorphism.

COROLLARY 1.4. If $C_i(A_S) = 0$, then $C_i(A)$ is generated by $\{cl(\mathfrak{p})\}$ where $ht(\mathfrak{p}) = i$ and $\mathfrak{p} \cap S \neq \emptyset$.

COROLLARY 1.5. There is an epimorphism $C_i(A) \rightarrow \bigoplus_{ht(\mathfrak{p})=i} C_i(A_{\mathfrak{p}})$ deduced from $\langle \mathfrak{p} \rangle \rightarrow \langle \mathfrak{p} A_{\mathfrak{p}} \rangle$.

THEOREM 1.6. If x_1, \dots, x_k is an A-sequence, then there is a homomorphism $C_i(A/\sum x_sA) \rightarrow C_{i+k}(A)$ whose image is the subgroup of $C_{i+k}(A)$ generated by $\{cl(\mathfrak{p})\}$ where $ht(\mathfrak{p}) = i+k$ and $\mathfrak{p} \supseteq \sum x_sA$.

With Theorem 1.2, this yields

COROLLARY 1.7. Suppose that x is an A-sequence. Then the sequence

$$C_i(A/xA) \rightarrow C_{i+1}(A) \rightarrow C_{i+1}(A[x^{-1}]) \rightarrow 0$$

is exact.

An application of the associative law for multiplicities yields

THEOREM 1.8. If $ht(\mathfrak{p}) = k$ and $cl(\mathfrak{p}) = 0$, then there is a homomorphism $C_i(A/\mathfrak{p}) \to C_{i+k}(A)$ whose image is the subgroup of $C_{i+k}(A)$ generated by the $cl(\mathfrak{q})$ where $ht(\mathfrak{q}) = i + k$ and $\mathfrak{q} \supseteq \mathfrak{p}$.

Using techniques similar to those of [2, Proof of Proposition 7-1] we get

LEMMA 1.9. Suppose that $C_i(A_{\mathfrak{p}}) = 0$ for each prime ideal \mathfrak{p} of height i of A. Then $C_{i+1}(A[X])$ is generated by $\{\operatorname{cl}(\mathfrak{q}A[X])\}$ where \mathfrak{q} ranges over the prime ideals of A of height i+1.

THEOREM 1.10. If $C_i(A_{\mathfrak{p}}) = 0$ for all prime ideals \mathfrak{p} of A of height i, then there is an epimorphism $C_{i+1}(A) \rightarrow C_{i+1}(A[X])$.

COROLLARY 1.11. (Cf. [1, Corollary to Theorem 2].) C.(A) = 0 implies C.(A[X]) = 0.

REMARK. Corollary 1.11 does not hold for power series adjunction as Samuel's example [4] shows.

COROLLARY 1.12. If F is a field, then $C_{\bullet}(F[X_1, \dots, X_n]) = 0$.

COROLLARY 1.13. Let the Krull dimension of A be $n < \infty$. Suppose that $C_n(A_{\mathfrak{p}}) = 0$ for each prime ideal \mathfrak{p} of A of height n. Then $C_{n+1}(A[X]) = 0$.

A theorem similar to Theorem 1.10 is

THEOREM 1.14. Let A and B be finitely generated over a field F. Suppose, that for each $i \ge 0$, $C_i(A_{\mathfrak{p}}) = 0$ for any prime ideal \mathfrak{p} of height i of A, and that $C_*(K \otimes_F B) = 0$ for any overfield K of F. Then there is an epimorphism $C_i(A) \to C_i(A \otimes_F B)$ given by $\operatorname{cl}(\mathfrak{p}) \to \operatorname{cl}(\mathfrak{p} \otimes_F B)$. In particular, $C_*(A) = 0$ implies $C_*(A \otimes_F B) = 0$.

THEOREM 1.15. For $i \ge 1$, $C_i(A_1 \oplus A_2) = C_i(A_1) \oplus C_i(A_2)$.

2. Let A be a commutative noetherian ring. The hypotheses on A in §1 need not be assumed in order to define the groups $W_i(A)$. The reader is referred to [3] for the K-theory needed here.

Let $\mathfrak{M}_i(A) = \mathfrak{M}_i$ denote the category of finitely generated A-modules M such that $M_{\mathfrak{p}} = 0$ for all prime ideals \mathfrak{p} of A with $ht(\mathfrak{p}) < i$. Then \mathfrak{M}_j is a Serre subcategory of \mathfrak{M}_i for all j > i. Let $K^i(\mathfrak{C})$ denote the ith Grothendieck group of the category \mathfrak{C} for i = 0, 1. If $C \subset \mathfrak{C}$, then $\gamma(C)$ denotes the image (or class) of C in $K^0(\mathfrak{C})$.

PROPOSITION 2.1. $K^0(\mathfrak{M}_i/\mathfrak{M}_{i+1})$ is isomorphic to $D_i(A)$, the isomorphism being given by the length function.

Consider the following commutative diagram

$$K^{0}(\mathfrak{M}_{i+2}) \xrightarrow{=} K^{0}(\mathfrak{M}_{i+2})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K^{1}(\mathfrak{M}_{i}/\mathfrak{M}_{i+1}) \xrightarrow{} K^{0}(\mathfrak{M}_{i+1}) \xrightarrow{f} K^{0}(\mathfrak{M}_{i}) \xrightarrow{g} D_{i}(A) \xrightarrow{} 0$$

$$= \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K^{1}(\mathfrak{M}_{i}/\mathfrak{M}_{i+1}) \xrightarrow{} D_{i+1}(A) \xrightarrow{f'} K^{0}(\mathfrak{M}_{i}/\mathfrak{M}_{i+2}) \xrightarrow{g'} D_{i}(A) \xrightarrow{} 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0$$

Because each element in $\mathfrak{M}_i/\mathfrak{M}_{i+1}$ has finite length, each of the rows is exact. The columns are also exact.

Since the group $D_i(A)$ is free, the kernels of g and g' in the above diagram are direct summands of their respective domains. For each

 $i \ge 0$ define the group $Z_{i+1}(A)$, and the homological class group of rank i+1, $W_{i+1}(A)$, to be the kernels of g and g' respectively. Since the rows are exact this is the same as saying that $Z_{i+1}(A)$ is the image of f and $W_{i+1}(A)$ is the image of f'. Moreover

$$K^0(\mathfrak{M}_i) = Z_{i+1}(A) \oplus D_i(A)$$

and

$$K^0(\mathfrak{M}_i/\mathfrak{M}_{i+2}) = W_{i+1}(A) \oplus D_i(A).$$

The results of [3] yield

PROPOSITION 2.2. K^1 ($\mathfrak{M}_i/\mathfrak{M}_{i+1}$) is isomorphic to the direct sum of the groups of units of $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$, $ht(\mathfrak{p})=i$. Consequently the kernel of f' is generated by the $\gamma(A/(\mathfrak{p}+xA))$, $x \in \mathfrak{p}$, as \mathfrak{p} ranges over the prime ideals of A of height i, and hence $W_{i+1}(A)$ is $D_{i+1}(A)$ modulo the subgroup generated by these.

By convention $W_0(A) = 0$. Set $W^{\bullet}(A) = \bigoplus W_i(A)$. Diagram chasing will give

THEOREM 2.3. Let S be a multiplicatively closed subset of A. For each i there is an epimorphism $W_i(A) \rightarrow W_i(A_S)$ induced by the functor $A_S \otimes_A -$. The kernel is generated by $\gamma(A/\mathfrak{p})$ with $\mathfrak{p} \cap S \neq \emptyset$, $ht(\mathfrak{p}) = i$.

COROLLARY 2.4. If for each prime ideal \mathfrak{p} of A of height i with $\mathfrak{p} \cap S \neq \emptyset$, $\gamma(A/\mathfrak{p}) = 0$ in $K^0(\mathfrak{M}_{i-1}/\mathfrak{M}_{i+1})$ then the epimorphism of Theorem 2.3 is an isomorphism.

COROLLARY 2.5. If $W_i(A_S) = 0$, then $W_i(A)$ is generated by $\{\gamma(A/\mathfrak{p})\}$, $ht(\mathfrak{p}) = i$, $\mathfrak{p} \cap S \neq \emptyset$.

COROLLARY 2.6. The functors $A_p \otimes_A - induce$ an epimorphism $W_i(A) \rightarrow \bigoplus_{ht(\mathfrak{p})=i} W_i(A_{\mathfrak{p}})$.

THEOREM 2.7. Let A be locally Macaulay, I an unmixed ideal of height k. Then there is a homomorphism

$$W_{i}(A/I) \to W_{i+k}(A)$$

induced by considering each A/I-module as an A-module. The image is generated by the $\gamma(A/\mathfrak{p})$, \mathfrak{p} a prime ideal of height i+k containing I.

Using Theorems 2.3 and 2.7 one gets

THEOREM 2.8. Let x be an A-sequence, A a locally Macaulay ring. Then the sequence

$$W_{i}(A/xA) \rightarrow W_{i+1}(A) \rightarrow W_{i+1}(A[x^{-1}]) \rightarrow 0$$

is exact.

THEOREM 2.8. The functor $A[X] \otimes_A$ —induces an epimorphism $W_i(A) \to W_i(A[X])$. Furthermore $W_{n+1}(A[X]) = 0$ if the Krull dimension of A is $n < \infty$.

COROLLARY 2.9. $W \cdot (A) = 0$ implies $W \cdot (A[X]) = 0$.

COROLLARY 2.10. $W \cdot (F[X_1, \dots, X_n]) = 0$ when F is a field.

THEOREM 2.11. Let A_1 and A_2 be two rings. Then

$$W_{i}(A_1 \oplus A_2) = W_{i}(A_1) \oplus W_{i}(A_2).$$

3. It is natural to ask if $C_i(A) = W_i(A)$ when both are defined. There are several results in this direction.

THEOREM 3.1. $W_i(A)$ is a homomorphic image of $C_i(A)$.

THEOREM 3.2. If $C_i(A) = 0$, then $W_{i+1}(A) = C_{i+1}(A)$.

COROLLARY 3.3. If A is a domain, then $W_1(A) = C_1(A)$.

COROLLARY 3.4. $C \cdot (A) = 0$ if, and only if, A is an integral domain and $W \cdot (A) = 0$.

For an example which shows that in general $W^{\bullet}(A) \neq C^{\bullet}(A)$ let Q be a primary ring which is not a field and set A = Q[X]. Then $W_1(A) = 0$ while $C_1(A)$ is an infinite group.

REFERENCES

- 1. N. Bourbaki, Algebre commutative, Chapitre 7, Hermann, Paris, 1965.
- 2. L. Claborn, On the theory of E-rings, Doctoral Dissertation, University of Michigan, Ann Arbor, Michigan, 1963.
- 3. A. Heller, Some exact sequences in algebraic K-theory, Topology 3 (1965), 389-409.
 - 4. P. Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1-17.

University of Illinois, Urbana